Реферат: ЭВМ
2 Структура конструкций и поколения ЭВМ
Конструкцию ЭВМ можно представить в общем случае как изделие, представляющее собой систему различных по природе деталей с разными физическими свойствами и формами, определёнными образом объединённых между собой механически и электрически, способную выполнять определённые функции с необходимой точностью и надёжностью в условиях внешних воздействий.
Детали, входящие в конструкцию ЭВМ либо в конструкции её основных частей, можно условно разделить на две основные группы. Различающиеся по функциональному назначению.
Первую группу деталей образуют электрорадиоизделия; набор последних можно считать элементной базой ЭВМ. Именно эти электрорадиоизделия в конструкции ЭВМ соединяются электрически в соответствии с принципиальной схемой и выполняют необходимые полезные функции преобразования сигналов.
Вторая группа деталей, входящих в конструкцию, имеет в некотором смысле второстепенное значение. Она предназначена в основном для обеспечения работоспособности электрорадиоизделий: механического закрепления, защиты от внешних дестабилизирующих воздействий, отвода теплоты и т.д. Эту группу деталей, соединённых между собой механически и выполняющих, как правило, вспомогательные функции, можно считать конструктивной базой.
Следует, однако, указать, что некоторые детали и состоящие из них изделия зачастую выполняют одновременно как основные, так и вспомогательные функции. К таким изделиям можно отнести, например, печатные платы, разъёмные соединители и т.д. Кроме того, в составе электрорадиоизделий обычно всегда имеются детали, выполняющие типичные функции конструктивных элементов, например: основания и крышки корпусов интегральных микросхем (ИМС), микроплаты для закрепления бескорпусных кристаллов ИМС и др.
Относительная условность деления изделий (сборочных единиц, деталей) по принадлежности к элементной либо к конструктивной базе приводит к отсутствию четкого критерия, по которому те либо иные первичные конструкции ЭВМ могут быть отнесены к конкретной группе. В ряде случаев в основу такого деления может быть положен организационно – производственный принцип сборки конструкции. По этому принципу комплектующие электрорадиоизделия, включаемые в перечень элементов электрической принципиальной схеме, могут быть отнесены к элементной базе.
Элементную базу подразделяют на группы изделий:
- ИМС различной степени интеграции и микросборки;
- полупроводниковые приборы (транзисторы, диоды и др.);
- электровакуумные изделия (электронно-лучевые трубки, электрические сигнальные лампы, табло и т.д.);
- электрорадиоэлементы (ЭРЭ) (дискретные резисторы, конденсаторы), намоточные изделия (трансформаторы, дроссели, электромагнитные линии задержки и др.)и т.п.;
- изделия электропривода и автоматики (датчики, реле и др.);
- контрольно-измерительные приборы;
- коммутационные изделия (соединители, переключатели и т.д.).
Оставшаяся совокупность механических деталей конструкции, обеспечивающих механическую прочность, защиту от дестабилизирующих внешних воздействий, внешнее оформление и внутреннюю компоновку, а также механическое управление ЭВМ, может быть отнесена к конструктивной базе.
Основу конструктивной базы составляют несущие конструкции и отдельные монтажные детали. Несущие конструкции предназначены для механического закрепления, защиты от внешних воздействий и обеспечения доступа к электрорадиоизделиям при изготовлении и эксплуатации ЭВМ. К их числу можно отнести платы, панели, рамы, стойки, каркасы и т.д. К конструктивной базе относят также различные исполнительные механизмы, предназначенные для механического перемещения носителей информации, нанесения информации на носители и др. Такие механизмы обычно используются в конструкциях периферийных устройств ЭВМ.
Широкое внедрение ЭВМ в различные области народного хозяйства и науки вызывает необходимость постоянного развития и совершенствования как их программных, так и технических средств.
В развитии вычислительной техники с момента её зарождения принято условно выделять несколько этапов, или поколений. К характерным признакам, находящимся в тесной взаимосвязи и определяющим то либо иное поколение ЭВМ, обычно относятся: элементную базу и особенности конструкций, архитектуру и логическую структуру; математическое обеспечение; методы общения пользователей ЭВМ; технико-экономические показатели и др. Наиболее важным является первый признак, поскольку элементная база и конструкция определяют не только технико-экономические показатели отдельных устройств, но и возможности вычислительного процесса, построения и развития ЭВМ в целом. Прогресс в области элементной базы и конструкции всегда вызывает ускорение в развитии ЭВМ. Особенно он сказывается на функциональных возможностях ЭВМ, производительности, памяти ЭВМ и, несомненно, на надёжности, габаритах, массе и потребляемой энергии.
Так, применяемая в ЭВМ первого поколения элементная база (лампы, дискретные ЭРЭ, электромагнитные реле, шаговые искатели, коммутаторы, ферритовые ячейки памяти и др.) и мелкоблочные конструкции ячеек позволяли создать достаточно простые по современным понятиям ЭВМ. Например, наиболее быстродействующая ЭВМ первого поколения ЭНИАК (США,1943), выполнявшая примерно 5000 операций сложения в секунду и запоминавшая лишь 20 десятиразрядных слов, содержала около 18 тыс. электронных ламп и нуждалась во вспомогательной холодильной установке. Эта ЭВМ весила порядка 30 т и занимала при установке более 200 м2.
Замена электронных ламп транзисторами, применение печатного монтажа в ЭВМ второго поколения привела к тому, что наряду с улучшением показателей надёжности, технологичности, массогабаритных характеристик ЭВМ значительно повысились их операционные возможности и производительность, возросло количество используемого периферийного оборудования.
С развитием микроэлектроники в начале 60-х годов ЭВМ получили новую, более совершенную элементную базу, основу которой составили ИМС. Их применение в сочетании с многослойным печатным монтажом позволило создать ЭВМ третьего поколения с характеристиками, превосходящими на несколько порядков соответствующие характеристики ЭВМ второго поколения. В частности, резко увеличились быстродействие ЭВМ и надёжность вследствие перераспределения электрических соединений и выполнения их определённой части в самих ИМС, упростилась наладка ЭВМ, повысилась точность обработки информации, уменьшились габариты и потребляемая мощность. Совершенствование ИМС позволило создать сложные вычислительные машины и системы, количество электронного оборудования в которых в десятки раз стало превышать количество оборудования, используемого в машинах второго поколения.
Дальнейшее развитие технологии ИМС, методов автоматизированного проектирования привело к созданию кристаллов больших (БИС), сверхбольших (СБИС) и сверхскоростных ИМС, в которых плотность упаковки достигла 106 компонентов в 1 см3 ,а уровень интеграции – около 105 ... 107 компонентов в кристалле. Ожидается, что в ближайшие годы степень интеграции логических БИС достигнет 107 ... 108 и более логических элементов в кристалле. Такие интегральные микросхемы стали выполнять функции целых блоков и устройств ЭВМ третьего поколения
Реализация функциональных схем ЭВМ на корпусных и бескорпусных ИМС и БИС, как матричных, так и микропроцессорных, привела в настоящее время к созданию конструкции четвёртого поколения. На этом этапе применения БИС позволяет значительно повышать быстродействие ЭВМ, увеличивать плотность компоновки и, что особенно важно, уменьшать трудовые и материальные затраты на их производство. Вместе с тем возникла необходимость в устранении диспропорций между возможностями и размерами БИС, с одной стороны, и остальной элементной и конструктивной базой ЭВМ, с другой. Поэтому основополагающим в развитии конструкций ЭВМ стал принцип комплексной микроминиатюризации, позволяющей преодолеть это противоречие. Важность создания и использования в ЭВМ современных и перспективных элементной базы, конструкций и технологии ещё более усилилась.
В 1979 году в Японии был создан Комитет научных исследований в области ЭВМ пятого поколения. Программы разработки ЭВМ пятого поколения были приняты и в других странах, в том числе и в нашей. Возможности разработки таких ЭВМ тесно связаны с созданием СБИС на принципиально новых компонентах (например, переходы Джозефсона, транзисторы с высокой мобильностью носителей и др.), с использованием перспективных полупроводниковых материалов (арсенида галлия и т.д.)
3 Классификация ЭВМ
Сферы применения ЭВМ непрерывно расширяются. Современные ЭВМ используются практически во всех отраслях народного хозяйства.
Многообразие сфер применения и видов ЭВМ порождает и большое количество признаков, по которым осуществляется классификация ЭВМ. К таким признакам можно отнести: принцип действия; назначение ЭВМ; технические характеристики; объект установки; условия эксплуатации и обслуживания; применяемую элементную и конструктивную базу; экономические факторы и др. Возможное влияние этих факторов должно учитываться при проектировании и производстве ЭВМ.
Наиболее целесообразны укрупнённая классификация по ограниченному числу признаков, поскольку только такая классификация позволяет выделять основные отличительные признаки ЭВМ различных классов, групп, видов и категорий.
По принципу действия различают цифровые, аналоговые, аналогово-цифровые ЭВМ. Цифровые ЭВМ оперируют с сигналами, представленными в цифровой форме, аналоговые используют аналоговые сигналы, аналогово-цифровые – комбинацию этих принципов. Естественно, что основным отличительным признаком данных ЭВМ является вид элементной базы.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8