RSS    

   Лабораторная работа: Исследование точности численного интегрирования

Лабораторная работа: Исследование точности численного интегрирования

Министерство общего и профессионального образования РФ.

Уральский государственный технический университет – УПИ

Кафедра “Технология и средства связи”

"Исследование точности численного интегрирования"

 "Research of Accuracy of Numerical Integration"

Отчет

по лабораторной работе

 дисциплины

"Информатика",

третий семестр

Преподаватель: Болтаев А.В.

                                                                         Студенты: Степанов А.Г

                                                                               Черепанов К.А.

                                                                              Группа: Р-207

Екатеринбург

2000

Содержание

1.   Задание исследования.................................................................. 3

2.   Подробное описание задачи и способы ее решения................... 3

3.   Результаты исследований............................................................. 4

4.   Сравнение результатов.............................................................. 12

5.   Список библиографических источников................................... 13

6.   Текст программы........................................................................ 13

Задание исследования

Провести исследование внутренней сходимости численного интегрирования методом Симпсона и трапеций различных функций, задаваемых с помощью языка С.

Подробное описание задачи и способы ее решения

   Необходимо провести исследования так называемой внутренней сходимости численного интегрирования методами Симсона и трапеций различных функций, задаваемых с помощью функций языка С. Предполагается, что отрезок интегрирования [a,b] разбит на n равных частей системой точек (сеткой).

                   

   Контроль внутренней сходимости заключается в циклическом вычислении приближенных значений интеграла для удваимого по сравнению со значением на предыдущем прохождении цикла числа n. Отношения абсолютной величины разности этих значений к абсолютной величине предыдущего приближенного значения принимается в качестве критерия достижения точности интеграла.

   Построить зависимости количеств итераций от различных величин критерия точности.

   Построить обратные зависимости критерия точноти от количества итераций.

Повторить все вышеуказанные исследования для случая, когда при вычислении критерия точности разность значений интеграла относится не к предыдущему значению, а к точному значению аналитически вычисленного интеграла.

   Исследовать влияние увеличения верхнего предела интегрирования на точность (при прочих неизменных условиях)

Метод трапеций

, где

 

Метод Симпсона

, где

Результаты исследований

Таблица и график зависимости количества итераций от различных значений критерия точности

Для

Критерий точности Количество итераций
-0,1676631 14
-0,1518916 16
-0,0046931 12
-0,0026531 11
-0,0002639 10
-0,0001709 2
-0,0001297 9
-0,0000557 3
-0,000025 8
-0,0000198 4
-0,0000096 5
-0,0000038 6
0 15
0,0000052 7
0,071089 13


Критерий точности Количество итераций
-0,1127271 16
-0,0750288 15
-0,0540677 14
-0,0021415 12
-0,0005711 11
-0,0000458 9
-0,0000381 2
-0,0000191 3
-0,000008 4
-0,000004 5
-0,0000019 7
-0,0000002 6
0,000005 8
0,0002983 10
0,0164377 13


Критерий точности Количество итераций
-0,0066709 13
-0,0042367 14
-0,0003561 10
-0,0000016 5
-0,000001 4
0,0000005 3
0,0000006 6
0,0000009 2
0,0000009 7
0,0000223 8
0,000056 9
0,0002782 11
0,0003474 12
0,005293 16
0,0053267 15


Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.