RSS    

   Курсовая работа: Генетические алгоритмы в задаче оптимизации действительных параметров

}

return true;

class CDiophantine

public:

CDiophantine(int, int, int, int, int);  // Конструктор с коэффициентами при а,b,c,d

int Solve();                                 // Вычисляет решение уравнения

gene GetGene(int i)

{ return population[i];}

protected:

int ca,cb,cc,cd;                            // Коэффициенты при а,b,c,d

int result;

gene population[MAXPOP];            // Массив из генов - популяция

int Fitness(gene &);                    // Функция приспособленности

void GenerateLikelihoods();       // Вычисляет вероятности воспроизведения

float MultInv();

int CreateFitnesses();

void CreateNewPopulation();

int GetIndex(float val);

gene Breed(int p1, int p2);

Существуют две структуры: gene и класс CDiophantine. gene используется для слежения за различными наборами решений. Создаваемая популяция - популяция ген. Эта генетическая структура отслеживает свои коэффициенты выживаемости и вероятность оказаться родителем. Также есть небольшая функция проверки на равенство, просто чтобы сделать кое-какой другой код покороче. Теперь по функциям:

5.2 Функция Fitness

Вычисляет коэффициент выживаемости (приспособленности - fitness) каждого гена. В нашем случае это - модуль разности между желаемым результатом и полученным значением. Этот класс использует две функции: первая вычисляет все коэффициенты, а вторая - поменьше (желательно сделать ее inline) вычисляет коэффициент для какого-то одного гена.

CDiophantine::Fitness(gene &gn) //Вычисляет коэффициет приспособленности для данного гена

{

int total = ca * gn.alleles[0] + cb * gn.alleles[1] + cc * gn.alleles[2] + cd * gn.alleles[3];

return gn.fitness = abs(total - result);

}

int CDiophantine::CreateFitnesses() // Возвращает номер гена в популяции ,

{ // кот. явл. решением данного ур-я

float avgfit = 0;

int fitness = 0;

for(int i=0;i<MAXPOP;i++)

{

fitness = Fitness(population[i]);

//             avgfit += fitness;

if (fitness == 0)

{

return i;

}

}

return 0; //Возвращает 0 ,если среди генов данной популяции не нашлось решения

}

Заметим, что если fitness = 0, то найдено решение - возврат. После вычисления приспособленности (fitness) нам нужно вычислить вероятность выбора этого гена в качестве родительского.

5.3 Функция Likelihood

Как и было объяснено, вероятность вычисляется как сумма обращенных коэффициентов, деленная на величину, обратную к коэффициенту данному значению. Вероятности кумулятивны (складываются), что делает очень легким вычисления с родителями. Например:

Таблица

Хромосома Вероятность
1 (1/84)/0.135266 = 8.80%
2 (1/24)/0.135266 = 30.8%
3 (1/26)/0.135266 = 28.4%
4 (1/133)/0.135266 = 5.56%
5 (1/28)/0.135266 = 26.4%

В программе, при одинаковых начальных значениях, вероятности сложатся: представьте их в виде кусков пирога. Первый ген - от 0 до 8.80%, следующий идет до 39.6% (так как он начинает 8.8). Таблица вероятностей будет выглядеть приблизительно так:


Таблица

Хромосома Вероятность (smi = 0.135266)
1 (1/84)/smi = 8.80%
2 (1/24)/smi = 39.6% (30.8+8.8)
3 (1/26)/smi = 68% (28.4+39.6)
4 (1/133)/smi = 73.56% (5.56+68)
5 (1/28)/smi = 99.96% (26.4+73.56)

Последнее значение всегда будет 100. Имея в нашем арсенале теорию, посмотрим на код. Он очень прост: преобразование к float необходимо для того, чтобы избежать целочисленного деления. Есть две функции: одна вычисляет smi, а другая генерирует вероятности оказаться родителем.

float CDiophantine::MultInv()

{

float sum = 0;

for(int i=0;i<MAXPOP;i++)

{

sum += 1/((float)population[i].fitness);

}

return sum; //Сумма обратных коэффициентов приспособленности всех генов в популяции

}

void CDiophantine::GenerateLikelihoods() //Генерирует вероятности воспроизведения

{

float multinv = MultInv();

float last = 0;

for(int i=0;i<MAXPOP;i++)

{

population[i].likelihood = last = last + ((1/((float)population[i].fitness) / multinv) * 100);

}

}

Итак, у нас есть и коэффициенты выживаемости (fitness) и необходимые вероятности (likelihood). Можно переходить к размножению (breeding).

5.4 Функции Breeding

Функции размножения состоят из трех: получить индекс гена, отвечающего случайному числу от 1 до 100, непосредственно вычислить кроссовер двух генов и главной функции генерации нового поколения. Рассмотрим все эти функции одновременно и то, как они друг друга вызывают. Вот главная функция размножения:

CDiophantine::CreateNewPopulation() {

gene temppop[MAXPOP];

for(int i=0;i<MAXPOP;i++)

{

int parent1 = 0,parent2 = 0, iterations = 0;

while(parent1 == parent2 || population[parent1] == population[parent2])

{

parent1 = GetIndex((float)(rand() % 101));

parent2 = GetIndex((float)(rand() % 101));

if (++iterations > MAXPOP) break; // В этом случае родителей выбираем случайно

}

 

temppop[i] = Breed(parent1, parent2);  // Процесс размножения

}

for(i=0;i<MAXPOP;i++)

population[i] = temppop[i];

}

Итак, первым делом мы создаем случайную популяцию генов. Затем делаем цикл по всем генам. Выбирая гены, мы не хотим, чтобы они оказались одинаковы (ни к чему скрещиваться с самим собой :), и вообще - нам не нужны одинаковые гены (operator = в gene). При выборе родителя, генерируем случайное число, а затем вызываем GetIndex. GetIndex использует идею куммулятивности вероятностей (likelihoods), она просто делает итерации по всем генам, пока не найден ген, содержащий число:

int CDiophantine::GetIndex(float val) // По данному числу от 0 до //100 возвращает

{ // номер необходимого гена в популяции

float last = 0;

for(int i=0;i<MAXPOP;i++)

{

if (last <= val && val <= population[i].likelihood) return i;

else last = population[i].likelihood;

}

 

return 4;

}

Возвращаясь к функции CreateNewPopulation(): если число итераций превосходит MAXPOP, она выберет любых родителей. После того, как родители выбраны, они скрещиваются: их индексы передаются вверх на функцию размножения (Breed). Breed function возвращает ген, который помещается во временную популяцию. Вот код:

gene CDiophantine::Breed(int p1, int p2)

{

int crossover = rand() % 3+1; //Число от 1 до 3 - генерируем точку кроссовера.

int first = rand() % 100; // Какой родитель будет первым ?

gene child = population[p1];       // Инициализировать ребенка первым родителем

int initial = 0, final = 4;

if (first < 50) initial = crossover;

// Если первый родитель р1(вероятность этого 50%) -

// начинаем с точки кроссовера

else final = crossover;                // Иначе - заканчиваем на точке кроссовера

for(int i=initial;i<final;i++)

{             // Кроссовер

child.alleles[i] = population[p2].alleles[i];

if (rand() % 101 < 5) child.alleles[i] = rand() % (result + 1);

// 5% - мутация

}

return child;                               // Возвращаем ребенка

}

void CDiophantine::CreateNewPopulation() {

gene temppop[MAXPOP];

for(int i=0;i<MAXPOP;i++)

{

int parent1 = 0,parent2 = 0, iterations = 0;

while(parent1 == parent2 || population[parent1] == population[parent2])

{

parent1 = GetIndex((float)(rand() % 101));

parent2 = GetIndex((float)(rand() % 101));

if (++iterations > MAXPOP) break; // В этом случае родителей выбираем случайно

}

 

temppop[i] = Breed(parent1, parent2);        // Процесс размножения

}

for(i=0;i<MAXPOP;i++)

population[i] = temppop[i];

}

В конце концов мы определим точку кросс-овера. Заметим, что мы нехотим, чтобы кросс-овер состоял из копирования только одного родителя. Сгенерируем случайное число, которое определит наш кроссовер. Остальное понятно и очевидно. Добавлена маленькая мутация, влияющая на скрещивание. 5% - вероятность появления нового числа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.