Дипломная работа: Обеспечение защиты информации в локальных вычислительных сетях
При защите входов в здание необходимо надежно охранять все возможные пути проникновения в здание - как обычно используемые входы, так и окна и вентиляционные отверстия.
Обычные входы можно контролировать посредством личного опознавания входящего охраной или с использованием некоторых механизмов, например, ключей или специальных карточек.
Для обнаружения проникновения злоумышленника в критическую зону можно использовать существующие системы сигнализации. Фотометрические системы обнаруживают изменения уровня освещенности. Звуковые, ультразвуковые или СВЧ - системы обнаружения перемещения объектов реагируют на изменение частоты сигнала, отраженного от движущегося тела. Звуковые и сейсмические (вибрационные) системы обнаруживают шум и вибрацию. И наконец, системы, реагирующие на приближение к защищаемому объекту, обнаруживают нарушение структуры электромагнитного или электростатического поля.
1.3.2 Идентификация и установление личности
Так как функционирование всех механизмов ограничения доступа, использующих аппаратные средства или средства математического обеспечения основано на предположении, что пользователь представляет собой конкретное лицо, то должен существовать некоторый механизм установления его подлинности. Этот механизм может быть основан на выявлении того, что знает только данный пользователь или имеет при себе, или на выявлении некоторых особенностей самого пользователя.
При использовании замков и электрических или механических кнопочных систем применяются комбинации наборов знаков. Такая система, используемая для регулирования доступа к ЭВМ, называется системой паролей. Недостаток этой системы состоит в том, что пароли могут быть украдены (при этом пользователь может и не заметить потери), забыты или переданы. Для уменьшения опасности связанной с кражей паролей, последние должны часто изменяться, что создает проблемы формирования и распределения паролей. Аналогичный метод, называемый “рукопожатием”, предусматривает успешное выполнение некоторого алгоритма в качестве условия доступа к системе. В процессе “рукопожатия” пользователь должен обменяться с алгоритмом последовательностью паролей (они должны быть названы правильно и в правильной последовательности), хотя сам пользователь не знает алгоритма. Установление подлинности с помощью паролей вследствие своей простоты нашло наиболее широкое применение в вычислительных системах.
Пользователь может иметь при себе стандартный ключ или специальную карточку с нанесенным на нее, например, оптическим, магнитным или другим кодом.
Разработаны знаковые системы, которые основаны на изучении образца подчерка или подписи пользователя. Существуют системы, в которых для установления личности применяют геометрические характеристики руки или спектрограммы голоса пользователя. Также существуют системы, которые используют отпечатки пальцев пользователя и сравнивают их с хранящимися образцами.
1.3.3 Защита против электронного и электромагнитного перехвата
Подключение к линиям связи может быть осуществлено двумя способами. При пассивном подключении злоумышленник только прослушивает передаваемые данные, тогда как при активном подключении он передает некоторые собственные данные либо в конце законно передаваемых данных, либо вмести них. Основной мерой противодействия подключениям к линиям связи является шифрование сообщений. Кроме того, так как единственными местами, где легко подключиться к линии передачи данных, являются точки внутри помещений, где расположено передающее или приемное оборудование, линии передачи данных и кабельные шкафы должны надежно охраняться. Подключение к внешним участкам линий связи вынуждает вести передачу данных с высокой степенью уплотнения, что является малоэффективной и дорогостоящей операцией.
Вполне реальной угрозой является перехват электромагнитного излучения от ЭВМ или терминала. Правда, вследствие использования режима мультипрограммирования, когда одновременно обрабатывается несколько заданий пользователей, данные, полученные таким путем от большинства вычислительных систем, очень трудно поддаются дешифрованию. Однако, подслушивание терминалов вполне реально, особенно в пределах дальности порядка 6 м. Трудность выполнения этой операции быстро возрастает с расстоянием, так что подслушивание с расстояния, превышающего 45 м, становится крайне дорогостоящей операцией. При использовании более дорогой аппаратуры можно усилить и слабый сигнал. Например, большинство терминалов с ЭЛТ регенерируют отображаемую информацию через короткие интервалы времени. Следовательно, применяя сложные методы, можно совместно обработать и использовать данные нескольких каких циклов генерации.
1.3.4 Основные понятия безопасности компьютерных систем
Под безопасностью информации понимается состояние защищенности информации, обрабатываемой средствами вычислительной техники или автоматизированной системы, от внутренних или внешних угроз.
Под целостностью понимается как способность средств вычислительной техники или автоматизированной системы обеспечивать неизменность вида и качества информации в условиях случайного искажения или угрозы разрушения. Согласно руководящему документу Гостехкомиссии России “Защита от несанкционированного доступа к информации. Термины и определения” угрозы безопасности и целостности состоят в потенциально возможных воздействиях на вычислительную систему, которые прямо или косвенно могут нанести ущерб безопасности и целостности информации, обрабатываемой системой.
Ущерб целостности информации состоит в ее изменении, приводящем к нарушению ее вида или качества.
Ущерб безопасности подразумевает нарушение состояния защищенности содержащейся в вычислительной системе информации путем осуществления несанкционированного доступа к объектам вычислительной системы.
Несанкционированный доступ определяется как доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств, предоставляемых вычислительными системами. Можно ввести более простое определение несанкционированному доступу: несанкционированный доступ заключается в получении пользователем или программой доступа к объекту, разрешение на который в соответствии с принятой в системе политикой безопасности отсутствует.
Реализация угрозы называется атакой. Человек,
стремящийся реализовать угрозу, называется нарушителем, или злоумышленником.
Существует множество классификаций видов угроз по принципам и характеру их
воздействия на систему, по используемым средствам, по целям атаки и т.д.
Рассмотрим общую классификацию угроз безопасности вычислительных систем по
средствам воздействия на них. С этой точки зрения все угрозы могут быть
отнесены к одному из следующих классов (Рисунок 1.4):
1. Вмешательство человека в работу вычислительной системы. К этому классу относятся организационные средства нарушения безопасности вычислительных систем (кража носителей информации, несанкционированный доступ к устройствам хранения и обработки информации, порча оборудования) и осуществление нарушителем несанкционированного доступа к программным компонентам вычислительной системы (все способы несанкционированного проникновения в вычислительные системы, а также способы получения пользователем-нарушителем незаконных прав доступа к компонентам вычислительной системы). Меры, противостоящие таким угрозам, носят организационный характер (охрана, режим доступа к устройствам вычислительной системы), также включают в себя совершенствование систем разграничения доступа и системы обнаружения попыток атак (попыток подбора паролей).
2. Аппаратно-техническое вмешательство в работу вычислительной системы. Это нарушения безопасности и целостности информации в вычислительной системе с помощью технических средств, например, получение информации по электромагнитному излучению устройств вычислительной системы, электромагнитные воздействия на каналы передачи информации и другие методы. Защита от таких угроз, кроме организационных мер, предусматривает соответствующие аппаратные (экранирование излучений аппаратуры, защита каналов передачи информации от прослушивания) и программные меры (шифрация сообщений в каналах связи).
3. Разрушающее воздействие на программные компоненты вычислительной системы с помощью программных средств. Такие средства называются разрушающими программными средствами. К ним относятся компьютерные вирусы, троянские кони (или «закладки»), средства проникновения в удаленные системы с использованием локальных и глобальных сетей. Средства борьбы с подобными атаками состоят из программно и аппаратно реализованных систем защиты.
1.3.5 Современные программные угрозы информационной безопасности
Класс разрушающих программных средств (РПС) составляют компьютерные вирусы, троянские кони (закладки) и средства проникновения в удаленные системы через локальные и глобальные сети (Рисунок 1.5).
Компьютерный вирус – суть его сводится к тому, что программы приобретают свойства, присущие живым организмам, причем самые неотъемлемые – они рождаются, размножаются, умирают. Главное условие существования вирусов – универсальная интерпретация информации в вычислительных системах. Вирус в процессе заражения программы может интерпретировать ее как данные, а в процессе выполнения как исполняемый код. Этот принцип был положен в основу всех современных компьютерных систем, использующих архитектуру фон Неймана.
Рисунок 1.3 Типы разрушающих программных средств
Дать формальное определение понятию «компьютерный вирус» очень непросто. Традиционное определение, данное Ф.Коэном, «компьютерный вирус – это программа, которая может заражать другие программы, модифицируя их посредством добавления своей, возможно измененной, копии», ключевым понятием в определении вируса является его способность к саморазмножению, – это единственный критерий, позволяющий отличить программы-вирусы от остальных программ. При этом «копии» вируса действительно могут структурно и функционально отличаться между собой.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11