RSS    

   Реферат: Прогнозирование макроэкономических переменных с помощью дублирующих портфелей

-        премия за риск

-        временная структура облигаций

-        рыночные индексы (доходность индексов)

-        потребление

-        цены на нефть

Применительно к российскому рынку данную структуру можно сохранить неизменной, за исключением соответственно того, что в качестве государственных ценных бумаг будут рассматриваться ГКО, ОФЗ и Еврооблигации. Еврооблигации на российском рынке можно также рассматривать как безрисковый инструмент, т.к. в отличии от государственных облигаций, номинированных в национальной валюте, доходность еврооблигаций колеблется меньше и соответственно они имеет меньшую премия за риск.

Пожалуй, наиболее острой проблемой, возникающей перед специалистами по факторному анализу, является подбор четких и ясных критериев, позволяющих отсеять малозначимые факторы, повышающие размерность модели без увеличения ее точности, и при этом правильно определить вес для остальных факторов. Доказательством важности этого вопроса, а также отсутствия однозначно оптимальных решений, является изобилие всевозможных критериев отбора значимых компонент. Достаточно назвать такие известные методы, как расчет варимакс-критерия, n-критерий, отбор при помощи t-критерия Стьюдента и т.п.

Очевидно, что вводить в модель очередной фактор целесообразно только в том случае, если он в достаточной степени понижает уровень энтропии, а следовательно, увеличивает значение R-квадрат. Каким образом численно выразить прирост данной величины в зависимости от количества вводимых факторов? Рассмотрим эту проблему в свете коэффициентов последовательной детерминации.

Пусть имеются N факторов X1...XN, предположительно влияющих на доходность инвестиционного портфеля. При вводе в уравнение регрессии фактора Xi показатель R-квадрат принимает некоторое определенное значение. Выберем фактор, при котором оно будет наибольшим:

 (4.4)

где P12 - коэффициент последовательной детерминации для данного фактора,

ryx1 - парный коэффициент корреляции между доходностью и этим фактором.

Теперь вводится в полученное уравнение регрессии второй фактор таким образом, чтобы значение R-квадрат снова оказалось максимально возможным, и затем рассчитываем второй коэффициент последовательной детерминации:

 (4.5)

Аналогичным образом рассчитываем следующие коэффициенты:

  и т.д.

Базовый отбор факторов продолжается до тех пор, пока величина получаемых коэффициентов последовательной детерминации не станет меньше некоторого критического значения. Учитывая, что в механизм расчета скорректированной величины R-квадрат входит поправка на возрастание энтропии при вводе новых факторов, ее прирост на каждой итерации алгоритма должен быть положительным и, следовательно, критическое значение p должно быть больше нуля.

Данный метод позволяет отобрать из всех имеющихся факторов именно те, которые оказывают наибольшее влияние на доходность рассматриваемых ценных бумаг. Это позволяет существенно понизить размерность модели, создаваемой на основе методики, ускорить вычисления и при этом отбросить данные, не имеющие большого влияния на интересующие нас показатели. Как правило, от выявленных главных компонент зависит не менее 85% общей дисперсии, что лишний раз показывает эффективность выбранного метода анализа.

4.2 Применение кластерного анализа

Процедура кластеризации решает вопрос о сходстве финансовых активов, характеризуемых значениями многих параметров, на основе формальных математических критериев. Это позволяет заменить длительный и трудоемкий процесс изучения и сравнения активов более быстрым вычислительным алгоритмом. Кроме того, будучи средством анализа многомерных данных, кластеризация позволяет выделить активы с близкими значениями всех параметров.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их  компактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Как и любой другой метод, кластерный анализ имеет определенные недостатки  и ограничения: В частности, состав  и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет  замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой  совокупности каких-либо значений кластеров.

Общеизвестно, что изменение курсовой стоимости и дивидендов различных ценных бумаг не только в России, но и во всем мире зависит от ряда внутренних и международных факторов экономического и неэкономического характера. Эти факторы могут быть взаимосвязаны в различной степени, а тенденции изменения их динамики способны отличаться друг от друга в достаточно сильной степени. Следовательно, изменение стоимости инвестиционного портфеля в результате сложения различных тенденций с большой вероятностью оказывается достаточно сложной и практически непредсказуемой, если использовать обычный регрессионный анализ. Основные факторы воздействия влияют на различные ценные бумаги не только с разной эффективностью, но зачастую и в прямо противоположных направлениях. К примеру, повышение цен на нефть может благоприятно сказаться на ценных бумагах нефтяных корпораций, негативно отразившись на автомобилестроительном секторе.

В свете вышесказанного, возникает проблема определения с максимальной степенью точности существенных факторов и их влияние на курс ценных бумаг.

Как теоретики, так и практики сталкиваются с трудностями, когда перед ними возникает практически неизбежная задача разбиения множества существующих ценных бумаг на различные группы с относительно однородной структурой. Краеугольным камнем проблемы является вопрос подбора и согласования выбранных факторов так, чтобы их представление в многомерной системе координат достаточно точно производило разбиение на кластеры, характеризующиеся максимально схожими тенденциями. При этом нужно учитывать, что даже если бы и удалось подобрать точные коэффициенты для существующих количественных факторов, всегда найдутся не менее важные качественные показатели, выразить которые в количественной форме практически невозможно. В связи с этим принято группирование ценных бумаг на основе существующих индустриальных и прочих классификаций, а также отталкиваясь от априорной доходности (ex ante).

Разбиение множества ценных бумаг на отдельные кластеры в зависимости от динамики доходности осуществляется следующим образом: данные по доходности ценных бумаг на протяжении базы прогноза компонуются в общую матрицу вида:

 (4.6)

где Rkm – доходность по k-й ценной бумаге за m-й период,

Далее, разбиение на кластеры происходит через вычисление евклидова расстояния между ценными бумагами p и q по формуле

 (4.7)

где m – номер периода,

sRm – среднеквадратическое отклонение доходности за период m.

Критическая величина разбиения предполагается равной квадратному корню из количества периодов T, то есть средней величине евклидового расстояния:

 (4.8)

Преимущество данной методики заключается, во-первых, в том, что она позволяет с крайне высокой степенью точности группировать ценные бумаги со сходными тенденциями в изменении доходности на протяжении всего периода, определяющего базу прогноза, что дает основания рассчитывать на сохранение подобной тенденции и в дальнейшем.

Вторым ее преимуществом является возможность полной автоматизации, что значительно облегчает работу, позволяя использовать современные вычислительные средства, а также обрабатывать однородную информацию, получаемую из электронных баз данных.

5 ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ РАЗРАБОТКИ ПРОГНОЗА

Для реализации прогнозных моделей необходимо не только располагать своевременной и точной информацией, но и уметь осмысливать ее, делать выводы и результативно воплощать в принимаемых управленческих решениях. Необходимость присутствия информационной составляющей в процессе прогнозирования очевидна, поскольку она является основой всего управленческого процесса. Реализация любой цели в процессе деятельности всегда связана с проблемой выбора из имеющихся прогнозных альтернатив наиболее оптимальных и рациональных, что вносит элемент неопределенности в прогнозную модель. Снижение неопределенности возможно на базе использования информации, обеспечивающей определенными сведениями.

Информация – это совокупность сведений, сообщений, данных, материалов, определяющих меру потенциальных знаний менеджера об определенных процессах, происходящих на предприятии в их взаимосвязи. Суть информации составляют только те сведения, которые уменьшают неопределенность интересующих менеджера событий.

Возможности покрытия информационных потребностей при разработке прогнозов зависят от имеющейся информационной базы, накопленной за предыдущие периоды деятельности.

Следует учитывать, что прогноз есть вероятность наступления тех или иных событий и практически всегда в нем присутствует ошибка неопределенности и случайного влияния на показатель неучтенных и редко происходящих фактов. Это означает, что «идеальный прогноз» часто невозможен. Прогнозировать можно только область возможных состояний, дополняя экстраполируемое значение доверительным интервалом прогноза.

При прогнозирование макроэкономических детерминант с использованием дублирующих портфелей используется только внешняя информация, находящаяся в открытом доступе, такая как динамика ценных бумаг и макроэкономических показателей. Таким образом, не возникает трудностей со сбором информации и искажений, появляющихся при неполной информации.

6 ПРОВЕРКА АДЕКВАТНОСТИ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Сложность экономических процессов и явлений и другие особенности экономических систем затрудняют не только построение моделей, но и проверку их адекватности, истинности получаемых результатов.

В естественных науках достаточным условием истинности результатов моделирования и любых других форм познания является совпадение результатов исследования с наблюдаемыми фактами.

Главная задача экономической науки конструктивна: разработка научных методов планирования и управления  экономикой. Поэтому распространенный тип математических моделей экономики - это модели управляемых и регулируемых экономических процессов, используемые для преобразования экономической действительности. Такие модели называются нормативными. Если ориентировать нормативные модели только на подтверждение действительности, то они не смогут служить инструментом  решения качественно новых социально-экономических задач.

Специфика верификации нормативных моделей экономики состоит в том, что они, как правило, "конкурируют" с другими, уже нашедшими практическое применение методами. При этом далеко не всегда можно поставить чистый эксперимент по верификации модели, устранив влияние других управляющих воздействий на объект.

Ситуация еще более усложняется  когда ставится вопрос о верификации моделей долгосрочного прогнозирования (как дескриптивных, так и нормативных). Ведь нельзя же 10-15 лет и более пассивно ожидать наступления событий, чтобы проверить правильность предпосылок модели.

Несмотря на отмеченные усложняющие обстоятельства, соответствие модели фактам и тенденциям реальной экономической жизни остается важнейшим критерием, определяющим направления совершенствования моделей. Всесторонний анализ выявляемых расхождений между действительностью и моделью, сопоставление результатов по модели с результатами, полученными иными методами, помогают выработать пути коррекции моделей.

Значительная роль в проверке моделей принадлежит логическому анализу, в том числе средствами самого математического моделирования. Такие формализованные приемы проверки моделей, как доказательство существования решения в модели, проверка истинности статистических гипотез о связях между параметрами и переменными модели, сопоставления размерности величин и т.д., позволяют сузить класс потенциально "правильных" моделей.

Внутренняя непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.

Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.


ЗАКЛЮЧЕНИЕ

В системе формирования рыночных механизмов возрастает необходимость в принятии нестандартных, оперативных и правильных решениях. Основой для такого подхода в принятии управленческих решений является экономическое прогнозирование, призванное выявить общие перспективы и эволюции, тенденции организационно-структурного развития, обеспечить сбалансированность краткосрочных и долгосрочных программ.

Главная особенность прогнозирования заключается в том, что он нацелен на будущее; вторая важная черта – учет неопределенности, связанной с этим будущим.

Для реализации прогнозных моделей необходимо располагать своевременной и точной информацией, которая является основой всего управленческого процесса. Информация в процессе разработки и реализации прогнозов – сумма нужных, воспринятых и осознанных сведений, необходимых для анализа конкретной ситуации, дающая возможность комплексной оценки причин ее возникновения и развития.

Существует большое разнообразие методов прогнозирования, наиболее используемыми являются методы из статистической группы такие, как экстраполяция трендов, экспоненциальное сглаживание, корреляционный анализ, метод скользящей средней и др.

Дублирующий портфель является одним из таких методов. Само по себе построение такого портфеля не дает еще информации о будущем, но при построении дублирующего портфеля для будущих переменных позволяет выявить некую закономерность движения доходности активов и прогнозируемых макроэкономических переменных.

Дублирующие портфели применяются при решении нескольких вопросов. Одной из проблем является измерение премии за риск. Дублирующие портфели имеют как минимум еще три сферы применения, которые не основываются на портфелях, приносящих ненулевую премию за риск. Во-первых, эти портфели могут служить средством хеджирования для индивидуальных инвесторов, которые желают застраховать себя на случай какого-либо определенного экономического риска. Во-вторых, на основе дублирующего портфеля можно строить прогноз поведения какой-либо экономической переменной. Т.к. доходности активов могут быть рассчитаны на каждый день, дублирующие портфели могут предоставить информацию по поводу ожиданий рынка на счет будущего экономики. В-третьих, путем измерения ожиданий, портфели следования выявляют структуру экономики и объясняют реакцию цен на новости, касающиеся экономической сферы.

Использование доходности дублирующих портфелей в качестве инструмента прогноза будущих значений экономических переменных существенно увеличивает важность оценки чувствительности цен активов к новостям о значении в будущем данных переменных.


СПИСОК ЛИТЕРАТУРЫ

1.       1. Шарп У., Александер Г., Бэйли Дж. Инвестиции: Пер. с англ. – М.: ИНФРА-М, 2001. – XII, 1028 с.

2.       Owen Lamont. Economic Tracking Portfolios. 1999. NBER Working Paper no. 7055.

3.       Chen, N.; R. Roll and S.A. Ross, 1986, Economic Forces and the Stock Market. The Journal of Business 59, 383-403.

4.       Chan, L.K.C., J.Karceski and J. Lakonishok, 1998. The Risk and Return from Factors. Journal of Financial and Quantitative Analysis 33, 159-188.

5.       Fama, E.F., 1990, Stock Return. Expected Returns, and Real Activity. Journal of Finance 45, 1089-1108.

6.       Breeden, D.T.; M.R. Gibbons; R.H. Litzenberger, 1989, Empirical Test of the Consumption-Oriented CAPM. Journal of Finance 44, 231-262.

7.       Fama, E.F.; K.R. French. 1993. Common Risk Factors in the Returns on Stock and Bonds. Journal of Financial Economics 33, 3-56.

8.       Campbell, J.Y., 1991, A Variance Decomposition for Stock Returns. Economic Journal 1001, 157-179.

9.       Campbell, J.Y., and J. Ammer, 1993, What Moves the Stock and Bond Markets? A variance Decomposition for Long-term Asset returns. Journal of Finance 48, 3-38.

10.     Campbell, J.Y., and J. Mei, 1993, Where Betas Come from? Asset Price Dynamics and the Source of Systematic Risk. Review of Financial Studies 6, 567-592.


Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.