Реферат: Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности
Реферат: Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности
Государственное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский Государственный
Инженерно-Экономический Университет
РЕФЕРАТ
на тему:
«Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности»
Выполнил: Деревянко П.М.
Проверил: к.э.н., доц. Сергеев В.Р.
Санкт-Петербург
2006
Оглавление
Список используемых сокращений 3
1. Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности 4
2. Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов в условиях неопределенности 13
Список используемых сокращений
1. ЗЛП – Задача Линейного Программирования
2. ИП – Инвестиционный(-ые) Проект(-ы)
3. ЛПР – Лицо, Принимающее Решение
4. НМП – Нечеткое Математическое Программирование
5. ПР – Принятие Решений
6. ТНМ – Теория Нечетких Множеств
1. Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности
В ходе реализации ИП генерируется определенное движение денежных средств в форме их поступления и расходования. Это движение денежных средств реализуемого во времени ИП представляет собой непрерывный процесс и определяется понятием «денежный поток». Денежный поток представляет собой совокупность распределенных во времени поступлений и выплат денежных средств, генерируемых в ходе осуществления ИП [3]. Понятие "денежный поток" является агрегированным, составным, включающим в свой состав многочисленные виды этих потоков. Для эффективного, целенаправленного управления денежные потоки классифицируются по различным признакам. С экономической точки зрения ИП можно представить в виде модели денежных потоков, в которой наиболее укрупненно выделяются денежные притоки ( ) и оттоки ( ) в -ом периоде. Как правило, денежные потоки рассматриваются как равномерные в течение периода и приводятся к концу периода.
Оценка эффективности ИП представляет собой один из наиболее ответственных этапов в решении целого ряда стратегических задач, характерных для стадии реализации инвестиционной стратегии. Обоснованность принимаемого инвестиционного решения напрямую зависит от того, насколько объективно и всесторонне проведена эта оценка. В основе оценки эффективности ИП лежит система показателей, соизмеряющих полученный эффект от реализации ИП с его инвестиционными затратами. Ключевым вопросом в этой связи является сопоставление денежных потоков, что обусловлено следующими факторами: временной стоимостью денег, нестабильностью экономической ситуации.
Для оценки эффективности долгосрочных инвестиционных проектов используются различные показатели, наиболее известные из которых:
Ø Чистая текущая стоимость – NPV, ден.ед.;
Ø Индекс рентабельности – PI, д.ед.;
Ø Период окупаемости с учетом дисконтирования – DPP, годы;
Ø Внутренняя норма рентабельности – IRR, %;
Ø Модифицированная внутренняя норма рентабельности – MIRR, %;
Вышеперечисленные показатели оценки экономической эффективности ИП являются основой для принятия обоснованного инвестиционного решения.
В многочисленной литературе описаны различные модификации формул вычисления показателей экономической эффективности ИП (NPV, PI, DPP, IRR, MIRR) в зависимости от исходных условий [2,15,19,23,28,29,30,31], поэтому в данной работе не будет подробно описываться суть данных показателей, так как заинтересованный читатель сам может найти данную информацию в литературе. Очевидно, что каждый из вышеприведенных показателей имеет свои отличительные преимущества и недостатки, которые также детально описаны в литературе, поэтому для принятия обоснованных инвестиционных решений необходимо совместное использование данных показателей, так как они позволяют ЛПР с разных сторон оценить эффективность ИП.
Общим недостатком вышеперечисленных показателей эффективности ИП является требование определенности входных данных, которая достигается путем применения средневзвешенных значений входных параметров ИП, что, может привести к получению значительно смещенных точечных оценок показателей эффективности и риска ИП. Также очевидно, что требование детерминированности входных данных является неоправданным упрощением реальности, так как любой ИП характеризуется множеством факторов неопределенности: неопределенность исходных данных, неопределенность внешней среды, неопределенность, связанная с характером, вариантами и моделью реализации проекта, неопределенность требований, предъявляемых к эффективности ИП. Именно факторы неопределенности определяют риск проекта, то есть опасность потери ресурсов, недополучения доходов или появления дополнительных расходов. При анализе долгосрочных ИП, в том числе на основе вышеперечисленных показателей, необходимо прогнозировать во времени будущее состояние большого числа неопределенных параметров рыночной конъюктуры, поэтому абсолютно точный прогноз получить практически невозможно. При прогнозировании экономической эффективности и оценки рисков реализации ИП ключевым является проявление неопределенности числовых параметров планируемого ИП. Неустранимая неопределенность порождает столь же неустранимый риск принятия инвестиционных решений [10,11,12,13,24,26]. Следовательно, при проведении прогнозов необходимо учитывать факторы неопределенности, обуславливающие риск по определенному показателю эффективности, поэтому мы неминуемо сталкиваемся с проблемой формального представления неопределенных прогнозных параметров, определяющих ИП, и проведение с ними соответствующих расчетов. Таким образом, наличие различных видов неопределенностей приводит к необходимости адаптации вышеописанных показателей оценки экономической эффективности ИП на основе применения математических методов, позволяющих формализовать и одновременно обрабатывать различные виды неопределенности.
Если ИП формализовать в виде модели денежных потоков, которая в данной работе принята за базовую, то различные подходы к формализации неопределенности различаются по способам описания входных параметров ИП, то есть составляющих величин , , . Среди различных подходов к моделированию в условиях неопределенности можно выделить три основных подхода: вероятностный, нечетко-множественный и экспертный. Как свидетельствует мировой опыт [1,5,6,7,12,14,20,24,35], эффективность применения подходов на основе вероятностных, нечетко-множественных и экспертных описаниях к решению различных задач, зависит от уровня и характера неопределенности, связанной с конкретной задачей. Действительно, по мере увеличения неопределенности классические вероятностные описания уступают место, с одной стороны, субъективным (аксиологическим) вероятностям, основанным на экспертной оценке, а, с другой стороны, нечетко-интервальным описаниям, выраженным в виде функций принадлежности нечетких чисел или, в частном случае, в виде четкого интервала. Субъективные (аксиологические) вероятности - это вероятностные формализмы, не имеющие частотного смысла, а представляющие собой, к примеру, результат виртуального пари по Сэвиджу, точечную оценку, основанную на принципе максимума энтропии Гиббса-Джейнса [6,27]. При этом возникает серьезная проблема обоснования выбора этих оценок. Кроме того, как показано на конкретном примере в [6], принцип максимума энтропии Гиббса-Джейнса не согласуется с правилами рационального экономического поведения (не обеспечивается монотонность).
Очевидно, если исходные параметры ИП характеризуются репрезентативной статистикой, или имеются достаточные основания полагать, что исходные параметры подчиняются определенному вероятностному закону, то в данной ситуации применение вероятностного подхода вполне оправдано и эффективно. Однако, как правило, при моделировании реальных ИП, статистика либо не достаточно репрезентативна, либо отсутствует вовсе, тогда применение вероятностного подхода затруднительно, либо невозможно вовсе. Положение усугубляется тем, что при моделировании реальных ИП, приходиться иметь дело с различными видами неопределенности, что связано, с наличием разного объема полезной информации относительно неопределенных параметров ИП, а, следовательно, встает проблема одновременного использования и обработки такой разнородной информации, отсюда возникает необходимость приведения данной информации к единой форме представления.