RSS    

   Реферат: Очистка газообразных выбросов от аэрозолей

3.6. Вихревые пылеуловители

В вихревом пылеуловителе, как и в циклоне, сепарация пыли основана на использовании центробежных сил. Основное отличие вихревых пылеуловителей от циклонов заключается в наличии вспомогательного закручивающего газового потока.

Применяют два вида вихревых пылеуловителей: сопловые и лопаточные.

В аппарате и того и другого типа запыленный газ поступает в камеру через входной патрубок с завихрителем типа «розетка» и обтекателем. В кольцевом пространстве между корпусом аппарата и входным патрубком расположена подпорная шайба, которая обеспечивает безвозвратный спуск пыли в бункер.

Обтекатель направляет поток газа к периферии. Пылевые частицы за счет воздействия центробежных сил перемещаются из центральной части потока к периферии.

Далее процесс в аппаратах двух видов несколько отличается. В сопловом аппарате на запыленный поток воздействуют струи вторичного воздуха (газа), выходящие из сопел, расположенных тангенциально. Поток переходит во вращательное движение.

Отброшенные под воздействием центробежных сил к стенкам аппарата пылевые частицы захватываются спиральным потоком вторичного воздуха (газа) и вместе с ним движутся вниз в бункер. Здесь частицы пыли выделяются из потока, а очищенный воздух (газ) снова поступает на очистку.

Эксперименты показали положительную роль повышения давления вторичного воздуха до 30 – 40 кПа сверх атмосферного. Эффективное пылеулавливание может быть обеспечено и при меньшем давлении. Сопла для подачи вторичного воздуха нужно расположить по нисходящей спирали. Оптимальной явилась установка 8 сопел диаметра 11 мм двумя спиральными рядами под углом наклона 30°.

В аппарате лопаточного типа вторичный воздух, отобранный в периферии очищенного потока, подается кольцевым направляющим аппаратом с наклонными лопатками. По основным показателям аппараты лопаточного типа оказались более эффективными: при одинаковом диаметре камеры – 200 мм и производительности 330 м3/ч гидравлическое сопротивление соплового аппарата составило 3,7×103 Па, эффективность 96,5 %, а лопаточного соответственно 2,8×103 Па и 98% (при улавливании особо мелкодисперсной пыли).

Применяют следующие способы подведения к вихревому пылеуловителю воздуха, необходимого для закручивания обеспылеваемого потока: из окружающей среды, из очищенного потока, из запыленного потока. Первый вариант целесообразен, если очистке подвергается горячий газ, который необходимо охладить. Применяя второй вариант, можно несколько повысить эффективность очистки, так как для использования в качестве вторичного воздуха отбирают периферийную часть потока очищенного воздуха с наибольшим содержанием остаточной пыли. Третий вариант наиболее экономичен: производительность установки повышается на 40 – 65 % с сохранением эффективности очистки.

Вихревой пылеуловитель может применяться для очистки вентиляционных и технологических выбросов от мелкодисперсной пыли в химической, нефтехимической, пищевой, горнорудной и других отраслях промышленности. В вихревых пылеуловителях достигается весьма высокая для аппаратов, основанных на использовании центробежных сил, эффективность очистки – 98 – 99 % и выше. На эффективность очистки оказывает незначительное влияние изменение нагрузки (в пределах от 50 до 115 %) и содержания пыли в очищаемом воздухе (газе) – от 1 до 500 г/м3. Аппарат может применяться для очистки газов с температурой до 700°С. В вихревом пылеуловителе не наблюдается износа внутренних стенок аппарата, что связано с особенностями его воздушного режима. Аппарат более компактен, чем другие пылеуловители, предназначенные для сухой очистки выбросов.

3.7. Фильтрационные пылеуловители

В фильтрационных пылеуловителях очистка воздуха (газа) от пыли происходит при прохождении запыленного потока через слой пористого материала. В качестве фильтрующего слоя используют ткани, кокс, гравий и др.

Процесс фильтрации основан на многих физических явлениях (эффект зацепления, в том числе ситовый эффект, - аэрозольные частицы задерживаются в порах и каналах, имеющих сечение меньше, чем размеры частиц; действие сил инерции – при изменении направления движения запыленного потока частицы отклоняются от этого направления и осаждаются; броуновское движение – в значительной мере определяет перемещение высокодисперсных субмикронных частиц; действие гравитационных сил, электростатических сил – аэрозольные частицы и материал могут иметь электрические заряды или быть нейтральными).

По мере накопления в фильтрующем слое задержанных частиц режим фильтрации меняется. Для поддержания его в требуемых пределах производят регенерацию фильтра, которая заключается в периодическом или систематическом удалении задержанных частиц.

Большинство фильтров обладает высокой эффективностью очистки. Фильтры применяют как при высокой, так и при низкой температуре очищаемой среды, при различной концентрации в воздухе взвешенных частиц.

Соответствующим подбором фильтровальных материалов и режима очистки можно достичь требуемой эффективности очистки в фильтре практически во всех необходимых случаях.

Во многих конструкциях фильтровальных пылеуловителей режим работы фильтра, в частности, режим регенерации, поддерживается автоматически.

Обладая многими положительными качествами, фильтрующие устройства в то же время не лишены недостатков: стоимость очистки в фильтрах выше, чем в большинстве других пылеуловителей, в частности, в циклонах. Это объясняется большей конструктивной сложностью фильтров по сравнению с другими аппаратами, большим расходом электроэнергии. Многие конструкции фильтрационных пылеуловителей более сложны в эксплуатации и требуют квалифицированного обслуживания.

Фильтрационные пылеуловители в зависимости от материала фильтрующего слоя подразделяются на волокнистые, тканевые, зернистые.

3.7.1. Волокнистые фильтры

В волокнистых фильтрах фильтрующий слой образован относительно равномерно распределенными тонкими волокнами фильтрующих материалов. Эти фильтры предназначены для улавливания частиц мелкодисперсной и особо мелкодисперсной пыли при ее концентрации в очищаемом воздухе (газе) в пределах 0,5 – 5 мг/м3.

Волокнистые фильтры могут быть подразделены на тонковолокнистые, глубокие и грубоволокнистые фильтры.

Тонковолокнистые фильтры служат для улавливания высокодисперсной пыли и других аэрозольных частиц размером 0,05 – 0,1 мкм с эффективностью не менее 99 %. В качестве фильтровального материала используется ФП (фильтр Петрянова).

Для тонкой и условно грубой очистки применяют фильтры ПФТС, снаряженные стекловолокном. Производительность фильтров 200 – 1500 м3/ч, сопротивление 200 – 1000 Па. Фильтры применяют в тех случаях, когда температура очищаемой среды выше 60°С и в ней находятся вещества, разрушающие материалы ФП.

Основного недостатка тонковолокнистых фильтров (короткий срок службы фильтрующего слоя из-за неприменимости регенерации) лишены глубокие фильтры. Они рассчитаны на срок службы 10 – 20 лет. Это достигается благодаря наличию нескольких фильтрующих слоев общей высотой 0,3 – 2,0 м. Диаметр волокон 8 – 19 мкм. Первый слой фильтра на пути движения очищаемой среды состоит из грубых волокон, последний слой – из тонких. Фильтр применяется в системах стерилизации воздуха в производстве антибиотиков, витаминов и других био- и медицинских препаратов. Фильтр периодически стерилизуют острым паром, затем просушивают сухим воздухом.

Грубоволокнистые фильтры. Эти фильтры называют также предфильтрами, так как их устанавливают перед тонковолокнистыми фильтрами для предварительной очистки воздуха (газов). Благодаря этому снижается стоимость очистки, поскольку стоимость грубоволокнистых фильтров почти в 10 раз ниже тонковолокнистых, их легче заменять или регенерировать. Фильтровальный материал предфильтра состоит из смеси волокон диаметром от 1 до 20 мкм.

Фильтры-туманоуловители. Многие технологические процессы сопровождаются образованием туманов. Так, например образование тумана происходит при испарении масел, производстве и концентрировании различных кислот, производстве хлора и др. Жидкие частицы в тумане имеют размер менее 10 мкм.

Для улавливания частиц тумана в настоящее время применяют волокнистые фильтры-туманоуловители различных конструкций, для которых характерен непрерывный вывод уловленной жидкости.

Применяют в основном два типа фильтров-туманоуловителей: низкоскоростные и высокоскоростные.

Низкоскоростные фильтры снаряжены смесью в определенной пропорции грубых и тонких волокон. В элементе низкоскоростного фильтра соосно расположены две проволочные сетки, пространственно между которыми заполнено волокнами. Трубка в нижней части корпуса аппарата оборудована гидрозатвором, через который уловленная жидкость поступает в корпус аппарата.

Высокоскоростные туманоуловители. Увеличение скорости фильтрации приводит к уменьшению размеров волокнистых фильтров. Высокоскоростные фильтры выпускает фирма «Монсанто». Фильтр состоит из плоских элементов. Они установлены в каркасе, под которым расположен поддон, куда стекает уловленная жидкость. Фильтрующим слоем являются иглопробивные материалы-войлоки. По химической стойкости наиболее универсален полипропиленовый войлок. Толщина слоя – 3 – 12 мм, диаметр волокон 20 – 75 мм. Сопротивление фильтра 500 Па, эффективность улавливания частиц более 3 мм около 100 %.


3.7.2 Тканевые фильтры

Тканевые фильтры по форме фильтрующей поверхности могут быть рукавными и рамочными. Наибольшее распространение в промышленности получили рукавные фильтры. Рукавный фильтр состоит из ряда тканевых рукавов, подвешенных в металлической камере. Верхняя часть рукавов обычно заглушена

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.