RSS    

   Реферат: Витамины и питание

3. КЛАССИФИКАЦИЯ ВИТАМИНОВ.

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью  пищи, присутствуют  в  ней  в  чрезвычайно малых количествах по сравнению с основными её компонентами.

Витамины - необходимый элемент  пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них  синтезируются  в  недостаточном количестве данным организмом. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих своё действие на  обмен  веществ  в ничтожных концентрациях.

Витамины делят на две большие группы:1- витамины, растворимые в жирах, и  2-витамины, растворимые  в  воде. Каждая  из  этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами  латинского  алфавита. Следует  обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не  вполне отвечает исторической последовательности открытия витаминов.

В приводимой классификации витаминов в скобках  указаны  наиболее характерные  биологические  свойства  данного витамина - его способность предотвращать развития того или иного заболевания. Обычно названию  заболевания  предшествует  приставка «анти», указывающая на то, что данный витамин предупреждает или устраняет это заболевание.

3.1. ВИТАМИНЫ, РАСТВОРИМЫЕ В  ЖИРАХ.

Витамин  A (антиксерофталический).

Витамин D  (антирахитический).

Витамин E  (витамин размножения).

Витамин  K (антигеморрагический)

3.2. ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.

Витамин В1 (антиневритный).

Витамин В2 (рибофлавин).

Витамин PP (антипеллагрический).

Витамин В6 (антидермитный).

Пантотен   (антидерматитный фактор).

Биотин     (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).

Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор  пигментации).

Фолиевая  кислота (антианемический витамин, витамин роста для цыплят и бактерий).

Витамин В12 (антианемический витамин).

Витамин В15 (пангамовая  кислота).

Витамин С   (антискорбутный).

Витамин Р   (витамин проницаемости).

Многие относят также к числу витаминов холин  и непредельные жирные кислоты с двумя и большим числом двойных связей.  Все вышеперечисленные растворимые в воде витамины, за исключением инозита и витаминов С и Р, содержат  азот  в  своей  молекуле, и  их  часто объединяют в один комплекс витаминов группы В.

3.3. ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.

3.3.1. ВИТАМИН  В2 (рибофлавин).

Химическая природа и свойства витамина В2.

Выяснению структуры витамина В2 помогло наблюдение, что все активно действующие  на  рост препараты обладали жёлтой окраской и желто-зелёной флоуресценцией. Выяснилось, что  между  интенсивностью  указанной окраски  и фактором стимулирующим рост препарата в определённых условиях имеется параллелизм.

Вещество желто-зеленной  флуоресценцией, растворимое в воде, оказалось весьма распространенным в природе; оно относится к  группе  естественных  пигментов, известных  под  названием флавинов.К ним принадлежит например флавин молока (лактофлавин). Лактофлавин удалось выделить в химически чистом виде и доказать его тождество с витамином В2.

Витамин В2 - желтое кристаллическое  вещество, хорошо  растворимое  в воде, разрушающееся  при облучении ультрафиолетовыми лучами с образованием биологически неактивных соединений(люмифлавин в щелочной среде  и люмихром в нейтральной или кислой).


Витамин В2 представляет собой метилированное  производное  изоаллоксазина, к  которому  в положении 9 присоединён спирт рибитол; поэтому витамин В2 часто называют рибофлавином, т.е. флавином, к которому присоединён пятиатомный спирт рибитол:

Наличие активных  двойных связей в циклической структуре рибофлавина обуславливает некоторые химические реакции, лежащие в  основе  его биологического действия. Присоединяя водород по месту двойных связей, окрашенный рибофлавин  легко  превращается  в  бесцветное  лейкосоединение. Последнее, отдавая  при соответствующих условиях водород, снова переходит в рибофлавин, приобретая окраску. Таким образом, химические особенности  строения  витамина  В2  и обусловленные этим строением свойства предопределяют возможность участия витамина В2 в  окислительно-восстановительных процессах.

3.3.2. СОДЕРЖАНИЕ ВИТАМИНА В2 В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В  НЕМ.

Витамин В2 широко распространен во всех животных и растительных тканях. Он встречается  либо  в  свободном  состоянии (например, в  молоке, сетчатке), либо, в большинстве случаев, в виде соединения, связанного с белком. Особенно богатым  источником  витамина В2 являются дрожжи,  печень, почки, сердечная мышца млекопитающих,  а также рыбные продукты. Довольно высоким  содержанием рибофлавина отличаются многие растительные пищевые продукты.

Ежедневная потребность  человека в витамине В2, по-видимому, равняется 2-4 мг рибофлавина.

3.3.3. РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ.

Витамин В2 встречается во всех растительных и животных тканях, хотя и  в  различных количествах. Это широкое распространение витамина В2 соответствует участию  рибофлавина  во  многих  биологических  процессах. Действительно, можно считать  твёрдо  установленным, что  существует группа ферментов, являющихся необходимыми звеньями в цепи катализаторов биологического окисления, которые  имеют в составе своей простатической группы рибофлавин. Эту группу  ферментов  обычно  называют  флавиновыми ферментами.К ним  принадлежат, например, желтый  фермент, диафораза и ци-тохромредуктаза. Сюда же относятся  оксидазы  аминокислот, которые  осуществляют окислительное   дезаменирование аминокислот   в  животных тканях. Витамин В2входит в состав указанных коферментов в виде  фосфорного эфира. Так как  указанные  флавиновые  ферменты  находятся во всех тканях, то недостаток в витамине В2 приводит к падению интенсивности  тканевого дыхания  и обмена веществ в целом, а следовательно, и к замедлению роста молодых животных.

В последнее  время  было установлено, что в состав простетических групп ряда  ферментов, помимо  флавоновой  группы, входят  атомы  металлов(Cu,Fe,Mo).

3.4. ВИТАМИН РР (антипеллагрический витамин, никотинамид).

При отсутствии витамина РР (от английского pellagra preventing)  в пище, у человека возникает заболевание, получившее название пеллагры.

3.4.1. ХИМИЧЕСКАЯ ПРИРОДА ВИТАМИНА РР.

Антипеллагрическим витамином  является  никотиновая кислота или её амид. Никотиновая кислота была известна  химикам  ещё  с  1867  года, но только 70  лет  спустя, было установлено, что это относительно простое и хорошо изученное вещество играет роль важнейшего витамина.

Никотиновая кислота  представляет  собой белое кристаллическое вещество хорошо растворимое в воде и спирте. При кипячении и автоклавировании биологическая активность никотиновой кислоты не изменяется.


              5Никотиновая кислота        Амид никотиновой кислоты

Активностью антипеллагрического витамина обладает как сама никотиновая кислота, так и амид никотиновой кислоты.

По-видимому, в организме  свободная  никотиновая  кислота   быстро превращается в амидникотиновой кислоты, который и является истинным антипеллагрическим витамином.

При введении никотиновой кислоты людям и животным, страдающим пеллагрой, все признаки заболевания исчезают.

3.4.2. СОДЕРЖАНИЕ ВИТАМИНА РР В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЁМ.

Антипеллагрический витамин довольно широко распространён в  природе, благодаря чему  пеллагра  при  нормальном  питании встречается редко. Большое количество витамина РР находится в рисовых отрубях, где  содержание его  доходит почти до 100 мг%. В дрожжах и пшеничных отрубях, в печени рогатого скота и свиней также содержится довольно  значительное количество этого витамина.

Растения и некоторые микробы, а также, по-видимому, и некоторые  животные (крысы)способны синтезировать  антипеллагрический витамин и поэтому могут развиваться нормально и без поступления  извне. В  настоящее время выяснено, что  РР  может синтезироваться в организме из триптофана; недостаток триптофана в питании или нарушение его нормального обмена играет,  поэтому, важную роль в возникновении пеллагры. Человек, по-видимому не обладает достаточной способностью к синтезу антипеллагрического витамина, и доставка никотиновой кислоты или её амида с пищей необходима, особенно при диете, не содержащей  соответствующего  количества триптофана и  пиридоксина, например, при  резком  преобладании в пищевом рационе кукурузы (маиса). Суточная потребность в этом витамине для людей исчисляется в 15-25 мг для взрослых и 15 мг для детей.

3.4.3. РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ.

Никотиновая кислота, точнее,  её  амид, играет  исключительно важную роль в обмене веществ. Достаточно сказать, что в состав ряда  коферментных групп, катализирующих тканевое дыхание, входит амид никотиновой кислоты.

Отсутствие никотиновой кислоты в пище приводит к нарушению синтеза ферментов, катализирущих  окислительно-восстановительные   реакции, и ведет к нарушению механизма окисления тех или иных субстратов тканевого дыхания.

Избыток никотиновой кислоты выводится из организма с мочой в виде главным образом N1-метилникотинамида и частично  некоторых  других  ее производных.

3.5. ВИТАМИН В6 (ПИРИДОКСИН).

Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.