RSS    

   Реферат: Свободная субъединица хорионического гонадотропина человека как маркер синдрома Дауна

Катаболизм молекулы хорионического гонадотропина – это другой путь поступления свободной β-субъединицы в кровоток. Деградация ХГЧ начинается с одиночного расщепления между 47 и 48 аминокислотами β-субъединицы [20]. Это приводит к резкой потере функциональной активности ХГЧ и ее стабильности в крови (с 1300 часов до 22) [21]. ХГЧ с расщепленной β-субъединицей не способен взаимодействовать с рецепторами ЛГ/ХГ клеток желтого тела и стимулировать продукцию прогестерона, и, возможно, выступает в роли антагониста нативного гормона [22]. Расщепление ХГЧ связывают с плацентарными макрофагами, лейкоцитарная эластаза которых чувствительна к определенному строению длинной петли β-ХГЧ: последовательность гидрофильных аминокислот сменяется последовательностью гидрофобных аминокислот (рис.2). В связи с этим появление свободной β-ХГЧ в крови может зависеть от количества или активности плацентарных макрофагов [12].

После распада субъединиц, расщепленная молекула β-ХГЧ теряет С-терминальный пептид (область 93-145 аминокислот) и деградирует до конечного продукта распада ХГЧ – β-кор-фрагмента (два участка β-субъединицы, 6-40 и 55-92, соединенные четырьмя дисульфидными связями) (рис.3). Катаболизм ХГЧ приводит к появлению в крови только расщепленной β-ХГЧ.

Все эти процессы приводят к тому, что в плазме и моче беременных женщин обнаруживается большое количество дериватов (метаболических форм и предшественников) хорионического гонадотропина. Эта группа включает в себя нативный ХГЧ, ХГЧ с расщепленной β-субъединицей, ХГЧ без С-терминального выступа, свободную -субъединицу, свободную гипергликозилированную α-субъединицу, свободную β-субъединицу, расщепленную свободную β-субъединицу и β-кор-фрагмент [23].

Содержание свободной β-субъединицы ХГЧ в биологических жидкостях в норме и при патологии

Концентрации ХГЧ – нативного и с расщепленной β-субъединицей – в плазме крови и моче возрастают в первом триместре беременности, удваиваясь каждые 48 часов, и достигают пика около десятой недели беременности [24]. Концентрация нативного ХГЧ снижается с десятой по шестнадцатую недели беременности, достигая приблизительно 20% от пиковой концентрации, и остается около этого уровня до конца беременности [25]. В среднем ХГЧ с расщепленной β-субъединицей составляет около 9% от всех дериватов ХГЧ в плазме на втором нормальной месяце беременности и возрастает в среднем до 21% на девятом месяце. Несмотря на в среднем низкое содержание расщепленного ХГЧ, индивидуально оно может очень сильно меняться [26]. Изменения концентрации гормона в течение беременности отражают его основную функцию – поддержание продукции прогестерона желтым телом до того как плацента не возьмет эту функцию на себя [27].

Концентрация свободной β-ХГЧ в сыворотке крови беременных очень низка: около десятой недели беременности оно максимально (1-3% от всех дериватов ХГЧ), а к девятому месяцу понижается до 0,5%. Более высокое содержание свободной β-субъединицы наблюдается в моче, где достигает 9% от общего количества дериватов [20].

Содержание в крови и моче ХГЧ с расщепленной β-субъединицей, свободной β-субъединицы и β-кор-фрагмента значительно изменяется при синдроме Дауна у плода, беременности, осложненной преэкламсией (поздним токсикозом) и при трофобластических заболеваниях (пузырном заносе, трофобластических опухолях и хориокарциноме) [28-31, 34].

В пренатальной диагностике корреляция концентрации какого-либо маркера, в том числе свободной β-субъединицы ХГЧ, с патологией оценивается статистически – по вкладу в вероятность рождения больного ребенка, рассчитываемую на основании нескольких факторов. Все факторы риска, биохимические и ультразвуковые, оценивают в единицах МoМ (multiplies of median, кратности медиане). Затем с помощью специальных статистических программ рассчитывается вероятность рождения ребенка с синдромом Дауна с учетом возрастного риска [32, 33].

С 1993 года были проведены скрининговые исследования, в которых была установлена целесообразность использования свободной β-ХГЧ для скрининга синдрома Дауна в первом триместре [8]. Данные этих исследований представлены в табл. 1.

Таблица 1

Содержание свободной β-субъединицы ХГЧ в крови женщин в первом триместре беременности при наличии синдрома Дауна у плода.

Авторы

Количество случаев синдрома Дауна

Среднее значение (МоМ)

Macri e.a. [34] 38 2.20
Macintosh e.a. [35] 21 2.10
Kranz e.a. [8] 22 2.09
Haddow e.a. [36] 48 2.13

Таким образом, при синдроме Дауна концентрация свободной β-ХГЧ в 2 с лишним раза выше, чем значение для выборки в целом.

Характеристика эпитопов β-субъединицы ХГЧ

Развитие высокоспецифичных и чувствительных иммунохимических методов для определения свободной β-ХГЧ в крови основано на отборе моноклональных антител, способных отличать свободную β-ХГЧ от остальных метаболитов гормона. Антитела, специфически связывающие свободную β-субъединицу, впервые были получены в 1981 г. [37]. После этого было описано большое количество антител, однако четкое представление о расположении антигенных областей β-ХГЧ появилось только после изучения ее кристаллической структуры. Многочисленные исследования методами биохимической, в т.ч. энзиматической модификации, изучение кросс-реактивности в конкурентных иммуноанализах, с помощью искусственных синтетических пептидов и рентгеноструктурного анализа привели к выяснению эпитопной карты β-ХГЧ, свободной β-субъединицы и продуктов ее деградации.

Установлено, что свободная β-ХГЧ имеет четыре пространственно разделенных антигенных домена [38]. Два из них локализованы в С-терминальной области β-ХГЧ и являются небольшими слабо иммуногенными областями, состоящими каждая из одного эпитопа (113-116 и 137-144 аминокислотные остатки) [39]. Третий домен также представлен одним эпитопом, локализованным вблизи от «цистинового узла» с аргинином в положении 60 в качестве главной детерминанты, и является также слабо иммуногенным. Четвертый домен демонстрирует высокую иммуногенную активность и представлен четырьмя эпитопами в области β-кор-фрагмента. Кроме того, к этому домену также относится один из двух эпитопов, специфичных только для свободной β-ХГЧ (табл. 2) [40].

Таблица 2

Распределение эпитопов на дериватах ХГЧ.

«+» – присутствие эпитопа на молекуле, «–» – отсутствие.

Эпитоп

ХГЧ

Свободная

β-ХГЧ

β-кор-

фрагмент

β1 + + +
β2 + + +
β3 + + +
β4 + + +
β5 + + +
β6 - + +
β7 - + +
β8 + + -
β9 + + -
β10 - - +
β11 - - +
β12 - - +
β13 - - +

Из этих данных видно, что на свободной β-ХГЧ выявляются только два эпитопа (β6 и β7), антитела к которым не взаимодействуют с молекулой ХГЧ.

Коммерческие тест-системы для определения содержания свободной β-субъединицы ХГЧ в сыворотке крови

Из вышесказанного ясно, что сложность создания иммунометрической тест-системы для определения концентрации свободной β-ХГЧ связана с большим количеством метаболических форм ХГЧ, содержащихся в крови, и перекрестной реакцией антител с ними. В связи с тем, что β-ХГЧ составляет не более 3% от всех дериватов ХГЧ, для конструирования одностадийной системы необходимы высокочувствительные и специфичные только к свободной β-субъединице антитела [23]. По последним данным, охарактеризовано всего два антитела, специфически связывающиеся со свободной β-ХГЧ (табл. 2).

При обзоре коммерческих тест-систем (табл. 3), оказалось, что только в одной из них используются два антитела, специфичные к свободной β-ХГЧ, что позволило производителю (Wallac OY, Финляндия) [41] создать одностадийный вариант анализа. Все остальные компании предлагают двустадийный анализ. Можно предположить, что во всех этих системах только нижнее антитело имеет специфичность к свободной β-субъединице, а верхнее – к полной молекуле ХГЧ.

Таблица 3

Аналитические характеристики коммерческих тест-систем для определения концентрации свободной β-субъединицы ХГЧ в сыворотке крови («–» означает, что данные не найдены)

Комания

Антитела

Метод анализа

Диапазон,

чувствительность,

хук-эффект (мМЕ/мл)

Wallac OY, Финляндия

Оба к свободной

β-ХГЧ

Одностадийный флуороиммуно-

метрический

0-200

0,2

2000

DPC, США Только нижнее к свободной β-ХГЧ Двустадийный ИФА

до 80

0,04

нет

IBL, Германия - Двустадийный ИФА

до 50

0,5

нет

Genemed Biotechnologies, США - Двустадийный ИФА

0-250

Список литературы

Айламазян Э. К. Антенатальная диагностика и коррекция нарушений развития плода// Российский вестник перинаталогии и педиатрии. 1999. №3. с. 6-11.

Гинзбург Б. Г. Динамика частоты синдрома Дауна в разных регионах. //Российский вестник перинаталогии и педиатрии. 2000; №3: с.58.

Wald N. J, Cuckle H. S, Densem J. W. et al. Maternal serum screening for Downs syndrome in early pregnancy // BMJ. 1988; 297: 883-7.

Пренатальная диагностика в акушерстве: современное состояние, методы, перспективы. Методическое пособие под ред. Э.К. Айламазяна. СПб.: Изд-во Н-Л. 2002.

Merkatz I. R. , Nitowsky H. M. , Macri J. N., Johnson W. E. An Association between low maternal serum α-fetoprotein (AFP) and fetal chromosomal abnormalities.//Am. J. Obstet. Gynecol.1984; 148: 886-94.

Bogart H. M., Pandian M. R., Jones O. W. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities // Prenat. Diagn. 1987; 7: 623-30.

Wald NJ, Watt HC, Hackshaw AK. Integrated screening for downs syndrome based on tests performed during the first and second trimesters. //The New Engl. J. Med. 1999. 341/7: 461-467.

Krantz D.A., Larsen J.W., Buchanan P.D., Macri J.N. First-trimester Down syndrome screening: Free β-human chorionic gonadotropin and pregnancy-associated plasma protein A // Am. J. Obstet. Gynecol. 1996; 174: 612-6.

Miller S. M., Isabel J. M. Prenatal screening tests facilitate risk assessment // MlO. 2002. 2: 8-19.

Розен В. Б. Основы эндокринологии. М.: Изд-во МГУ, 1994. с. 89.

Lapthorn A. J., Hariris D. C., Littlejohn A. et al. Crystal structure of human chorionic gonadotropin. // Nature. 1994. 369.9: 455-61.

McDonald N. Q., Lapatto R., Murray-Rust J. et al. New protein fold revealed by 2.3 A resolution crystal structure of nerve growth factor // Nature. 1991. 354: 411-14.

Schlunegger M. P., Grutter M. G. An unusual feature reveal to end by the crystal structure at 2.2 A resolution of human transforming growth factor-β2. // Nature. 1992. 358: 430-34.

Oefner C., Darey A., Winkler F. K. et al. Crystal structure of human platelet-derived growth factor B. // EMBO J. 1992. 11: 3921-26.

Elliot M., Kardana A., Lustbader J. W., Cole L. A. Carbohydrate and peptide structure of the α- and β-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma.// Endocrine. 1988. 5: 2221-33.

Boorstein W. R., Vamvakopoulos N. C., Fiddes J. C. Human chorionic gonadotropin β-subunit is encoded by at least eight genes arranged in tandem, inverted pairs. // Nature. 1982. 300: 419-22.

Policastro P., Ovitt C. E., Hoshina M. et al. The β-subunit of human chorionic gonadotropin is encoded by multiple genes. // JBC. 1983. 258: 11492-99.

Boothby M., Kukowska J., Boime I. Imbalanced of human choriogonadotropin alpha, beta subunits reflects the steady state levels of the corresponding mRNAs. // JBC. 1983. 258: 9250-53.

Blithe D. L., Iles R. K. The role of glycosylation in regulating the glycoprotein hormone free alpha-subunit and free beta-subunit combination in the extraembryonic coelomic fluid of early pregnancy. // Endocrinology. 1995. 136: 903-910.

Cole L. A., Kardana A., Park S-Y., Braustein G. D. The deactivation of hCG by nicking and dissociation.// J. of clin. End. and Metab. 1993; 76(3): 704-10.

Spencer K., Macri J. N., Carpenter P. et al. Stability of intact chorionic gonaotropin in serum. Liquid whole blood and dried whole-blood filter-paper. // Clin. Chem. 1993. 39/6: 1064-68.

Cole L. A, Kardana A., Andrade-Gordon P. et al. The heterogeneity of hCG: III. The occurence, biological and immunological activities of nicked hCG. // Endocrinology. 1991. 129: 1559-67.

Cole L. A. Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. // Clin Chem. 1997; 43(12): 2233-43.

Pittaway D. E , Reiosh R. L. , Wentz A. C. Doubling times of human chorionic ginadotropin increase in early viable intrauterine pregnancies. // Am. J. Obstet. Gynecol. 1985. 152: 299-302.

Aspillaga M. O., Whittaker P. G., Taylor A., Lind T. Some new aspects of the endocrinological response to pregnancy. // Br. J. Obstet. Gynecol. 1983. 90: 596-603.

Cole L. A., Seifer D. B., Kardana A., Braunstein G. D. Selecting human chorionic gonadotropin immunoassays: consideration of cross-reacting molecules in first-trimester pregnancy serum and urine. //Am. J. Obstet. Gynecol. 1993; 168: 1580-6.

Rao C. V., Griffin L. P., Carman F. R. Gonadotorpin receptors in human corpora lutea of the menstrual cycle and pregnancy. // Am. J. Obstet. Gynecol. 128: 146-153.

Macri N., Kasturi R. V. , Krantz D. A. et al. Maternal serum Down syndrome screening: free beta-protein is a more effective marker than human chorionic gonadotropin. // Am. J. Obstet. Gynecol. 1990; 163: 1248-53.

Cuckle H. S., Iles R. K., Chard T. Urinary β-core human chorionic gonadotropin: a new approach to Downs syndrome screening. Prenat. Diagn. 1994; 14: 953-8.

Cole L. A. New perspectives in measuring human chorionic gonadotropin levels for measuring and monitoring trophoblast disease. // J. Reprod. Med. 1994; 74: 212-6.

Berkowitz R., Ozturk M., Goldstein D. et al. Human chorionic gonadotropin and free subunits serum levels in patients with partial and complete hydatidiform moles. // Obstet. Gynecol. 1989; 74: 212-6.

Leshin L. Prenatal testing for Down syndrome. At http://www.ds-health.com/prenatal.html

Кащеева Т. К., Полынцев Д. Г., Шаповалов В. В. и др. Опыт использования автоматизированной системы расчета риска патологии плода // Terra Medica. 2002; 1: 20-22.

Macri J. N., Spencer K., Aitken D. et al. First trimester free beta (hCG) screening for Down syndrome. Prenat. Diagn. 1993; 13: 557-62.

Macintosh M. C, Iles R., Teisner B. et al. Maternal serum human chorionic gonadotropin and pregnancy-associated plasma protein A, markers for fetal Down syndrome. Prenat. Diagn. 1994; 14: 203-8.

Haddow J. E., Palomaki G. E , Knight G. J. et al. Screening of maternal serum for fetal Downs syndrome in the first trimester. // The New Engl. J. of Med. 1998; 338 (14): 955-61.

Khasaeli M. B., England B. G, Dieterle R. C. et al. Development and characterisation of a monoclonal antibody which distinuishes the β-subunit of human chorionic gonadotropin in the presence of hCG. // Endocrin. 1981; 109: 1290.

Ong C. Y., Liao A. W., Spencer K. et al. First trimester maternal serum free β human chorionic gonaditropin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 2000; 107: 1265-70.

Dirnhofer S., Klieber R., DeLeeuw R. et al. Functional and immunological relevance of the COOH-terminal extension of human horionic gonadotropin β: implications for the WHO birth vaccine. // Faseb. J. 1993. 7, 1381-85.

Berger P., Klieber R., Panmoung W. et al. Monoclonal antibodies against the free subunits of human chorionic gonadotropin. // J. Endocrinol. 1990; 125: 301-9.

Qin Q., Christiansen M., Lovgren T. et al. Dual-label time-resolved immunofluorometric assay for simultaneous determination of pregnancy-associated plasma protein A and free β-subunit of human chorionic gonadotropin. // J. Immunol. Meth. 1997; 205: 169-175.


Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.