RSS    

   Реферат: Современная естественнонаучная картина мира

Реферат: Современная естественнонаучная картина мира

Рязанская Государственная Радиотехническая Академия

Кафедра Общей и Экспериментальной физики

Дисциплина синергетика

Реферат на тему:

«Современная естественнонаучная картина мира»

                                                                   

Выполнила: ст. гр. 070

                                           Болтукова А.А.

                                            

                              

                                                 Проверила:

                                                        Русакова Ж.П.

Рязань, 2003г.

СОДЕРЖАНИЕ

     Введение……………………………………………………….………….3

1. Естественнонаучное миропонимание………………….………….4

2. Строение вещества, энергия……………………….………………6

3.   Теория относительности…..………………………………………8

4. Учение о самоорганизации……………………………..…………10

5. Революция в естествознании…………………………...………...13

Заключение……………………………………………………………….16

Список литературы……….………………………...……………………18

 

 

 

 

 

 

 

 


В В Е Д Е Н И Е

Познание единичных вещей и процессов невозможно без одновременного познания всеобщего, а последнее в свою очередь познается только через первое. Сегодня это должно быть ясно каждому образованному уму. Точно также и целое постижимо лишь в органическом единстве с его частями, а часть может быть понята лишь в рамках целого. И любой открытый нами "частный" закон - если он действительно закон, а не эмпирическое правило - есть конкретное проявление всеобщности. Нет такой науки, предметом которой было бы исключительно всеобщее без познания единичного, как невозможна и наука, ограничивающая себя лишь познанием особенного.

Всеобщая связь явлений - наиболее общая закономерность существования мира, представляющая собой результат и проявление универсального взаимодействия всех предметов и явлений и воплощающаяся в качестве научного отражения в единстве и взаимосвязи наук. Она выражает внутреннее единство всех элементов структуры и свойств любой целостной системы, а также бесконечное разнообразие отношений данной системы с другими окружающими ее системами или явлениями. Без понимания принципа всеобщей связи не может быть истинного знания. Осознание универсальной идеи единства всего живого со всем мирозданием входит в науку, хотя уже более полувека назад в своих лекциях, читанных в Сорбонне, В.И.Вернадский отмечал, что ни один живой организм в свободном состоянии на Земле не находится, но неразрывно связан с материальноэнергетической средой. "В нашем столетии биосфера получает совершенно новое понимание. Она выявляется как планетное явление космического характера".

 

1. Естественнонаучное миропонимание

Естественнонаучное миропонимание (ЕНМП) - система знаний о природе, образующаяся в сознании учащихся в процессе изучения естественнонаучных предметов, и мыслительная деятельность по созданию этой системы.

Понятие "картина мира" является одним из фундаментальных понятий философии и естествознания и выражает общие научные представления об окружающей действительности в их целостности. Понятие "картина мира" отражает мир в целом как единую систему, то есть "связное целое", познание которого предполагает "познание всей природы и истории..." (Маркс К., Энгельс Ф., собр. соч., 2-е изд. том 20, с.630).

В основе построения научной картины мира лежит принцип единства природы и принцип единства знания. Общий смысл последнего заключается в том, что знание не только бесконечно многообразно, но оно вместе с тем обладает чертами общности и целостности. Если принцип единства природы выступает в качестве общей философской основы построения картины мира, то принцип единства знаний, реализованный в системности представлений о мире, является методологическим инструментом, способом выражения целостности природы.

Система знаний в научной картине мира не строится как система равноправных партнеров. В результате неравномерного развития отдельных отраслей знания одна из них всегда выдвигается в качестве ведущей, стимулирующей развитие других. В классической научной картине мира такой ведущей дисциплиной являлась физика с ее совершенным теоретическим аппаратом, математической насыщенностью, четкостью принципов и научной строгостью представлений. Эти обстоятельства сделали ее лидером классического естествознания, а методология сведения придала всей научной картине мира явственную физическую окраску. Однако острота этих проблем несколько сгладилась в связи с глубоким органическим взаимодействием методов этих наук и пониманию соотнесённости установления того или иного их соотношения.

В соответствии с современным процессом "гуманизации" биологии возрастает ее роль в формировании научной картины мира. Обнаруживаются две "горячие точки" в ее развитии: стык биологии и наук о неживой природе и стык биологии и общественных наук.

Представляется, что с решением вопроса о соотношении социального и биологического научная картина мира отразит мир в виде целостной системы знаний о неживой природе, живой природе и мире социальных отношений. Если речь идет о ЕНКМ, то должны иметься в виду наиболее общие закономерности природы, объясняющие отдельные явления и частные законы.

ЕНКМ - это интегрированный образ природы, созданный путем синтеза естественнонаучных знаний на основе системы фундаментальных закономерностей природы и включающий представления о материи и движении, взаимодействиях, пространстве и времени.


2. Строение вещества, энергия

В конце прошлого и начале нынешнего века в есте­ствознании были сделаны крупнейшие открытия, кото­рые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми части­цами материи, своеобразными кирпичиками, из кото­рых состоит природа, считались атомы, то в конце про­шлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер ато­мов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).

Согласно первой модели атома, построенной англий­ским ученым Эрнестом Резерфордом (1871—1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требу­ются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована вы­дающимся датским физиком Нильсом Бором (1885—1962), который предположил, что при вращении по так назы­ваемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

Значительно изменились также взгляды на энергию. Если раньше предполагалось, что энергия излучается непрерывно, то тщательно поставленные эксперименты убедили физиков, что она может испускаться отдельны­ми квантами. Об этом свидетельствует, например, явле­ние фотоэффекта, когда кванты энергии видимого света вызывают электрический ток. Это явление, как извест­но, используется в фотоэкспонометрах, которыми поль­зуются в фотографии для определения выдержки при экспозиции.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например, электроны обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между ве­ществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы веще­ства обнаруживают волновые свойства, а частицы поля — свойства корпускул. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материаль­ных частиц, может обладать лишь корпускулярными свойствами, а энергия поля— волновыми свойствами. Соединение в одном объекте корпускулярных и волно­вых свойств совершенно исключалось. Но под давлени­ем неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

В 1925—1927 г. для объяснения процессов, происхо­дящих в мире мельчайших частиц материи — микроми­ре, была создана новая волновая, или квантовая механи­ка. Последнее название и утвердилось за новой наукой. Впоследствии возникли и разнообразные другие квантовые теории: квантовая электродинамика, теория эле­ментарных частиц и другие, которые исследуют законо­мерности движения микромира.

3. Теория относительности

Другая фундаментальная теория современной физики — теория относительности, в корне изменившая научные представления о пространстве и времени. В специальной тео­рии относительности получил дальнейшее применение уста­новленный еще Галилеем принцип относительности в меха­ническом движении. Согласно этому принципу, во всех инерциальных системах, т.е. системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические процессы происходят одинаковым образом, и поэтому их законы имеют ковариантную, или ту же самую математическую форму. Наблюдатели в таких системах не заметят никакой разницы в протекании механических явле­ний. В дальнейшем принцип относительности был использо­ван и для описания электромагнитных процессов. Точнее го­воря, сама специальная теория относительности появилась в связи с преодолением трудностей, возникших в этой теории.

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.