RSS    

   Реферат: Ответы на билеты по биологии 11 класс

Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и рас­положенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготу аллельные гены ведут себя как независимые, цельные единицы.

2. Роль живых организмов в формировании и поддержании состава атмосферы Земли.

Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором , образующим поверхность Земли.

Живое вещество выполняет в биосфере следующие биологические функции:

Газовую –поглощает и выделяет газы; окислительно –восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний.

   Газовая и окислительно- восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза  органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ.

  Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.

3. Основные ароморфозы в эволюции беспозвоночных животных

Кишечнополостные:

- дифференцировка клеток и образование тканей;

- нервная система диффузного типа;

- полостное пищеварение

Плоские черви:

- двухсторонняя симметрия тела;

- системы органов пищеварения, выделительная и половая

Круглые черви:

- первичная полость тела

- наличие заднего отдела кишечника и анального отверстия

Кольчатые черви:

- органы движения;

- органы дыхания;

- замкнутая кровеносная система

- вторичная полость тела

- сегментация тела

Моллюски:

- разделение тела на отделы

- появление сердца, почки, печени

Членистоногие:

-наружный скелет

- членистые конечности

- поперечно-полосатая мускулатура

Насекомые

Появились крылья

Билет №22

1. Митоз.

Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно­клеточных существ, развитие сложного многоклеточного орга­низма из одной оплодотворенной яйцеклетки, возобновление кле­ток, тканей и даже органов, утраченных в процессе жизнедея­тельности организма.

Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распре­делению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Подготовка к делению. Эукариотические организмы, состоя­щие из клеток, имеющих ядра, начинают подготовку к деле­нию на определенном этапе клеточного цикла, в интерфазе.

Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клет­ки. Вдоль исходной хромосомы из имеющихся в клетке хими­ческих соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух полови­нок — хроматид. Каждая из хроматид содержит одну молеку­лу ДНК.

Интерфаза в клетках растений и животных в среднем про­должается 10—20 ч. Затем наступает процесс деления клетки — митоз.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.

Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 26 схема­тически показан ход митоза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играю­щие роль в расхождении дочерних хромосом животных. (На­помним, что у высших растений нет центриолей в клеточном центре, который организует расхождение хромосом.) Мы же рас­смотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубоч­ки, образующие нити веретена деле­ния, которое регулирует расхождение хромосом к полюсам делящейся клет­ки.

В конце профазы ядерная оболоч­ка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и

в результате этого укорачиваются и утолщаются, и их уже мож­но наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.

В метафазе хромосомы располагаются в экваториальной пло­скости клетки. При этом хорошо видно, что каждая хромосо­ма, состоящая из двух хроматид, имеет перетяжку — центро­меру. Хромосомы своими центромерами прикрепляют­ся к нитям веретена деления. После деления центромеры каж­дая хроматида становится самостоятельной дочерней хромосо­мой.

Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосо­мы) расходятся к разным полюсам клетки.

Следующая стадия деления клетки — телофаза. Она начи­нается после того, как дочерние хромосомы, состоящие из од­ной хроматиды, достигли полюсов клетки. На этой стадии хро­мосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длин­ные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосо­мы. В процессе деления цитоплазмы все органоиды (митохонд­рии, комплекс Гольджи, рибосомы и др.) распределяются меж­ду дочерними клетками более или менее равномерно.

Таким образом, в результате митоза из одной клетки полу­чаются две, каждая из которых имеет характерное для данно­го вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.

Весь процесс митоза занимает в среднем 1—2 ч. Продолжи­тельность его несколько различна для разных видов клеток. За­висит он также и от условий внешней среды (температуры, све­тового режима и других показателей).

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках орга­низма. В процессе митоза происходит распределение ДНК хро­мосом материнской клетки строго поровну между возникаю­щими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую ин­формацию.

2. Важнейшие достижения биологической науки в XX веке.

Вопрос о возможных путях достижения биологического прогресса был разработан Северцовым создал теорию морфологического и биологического прогресса и регресса.

 Вавиловым был сформулирован закон гомологических рядов наследственной изменчивости. Развивается селекция (Мичурин), генная инженерия, клонированы животные.

3. Составит схему пищевой цепи пресноводного водоема.

Растительными остатками и развивающимися на них бактериями питаются простейшие, которые поедают рачки. Рачков поедают рыбы. Рыбами питаются хищные рыбы. Рыбой птицы.

Растительные остатки и бактерии à простейшие-> рачки-> рыба->

Хищные рыбы -> птицы

Билет №23

 1. Мейоз и оплодотворение. Их место в жизненном цикле животных и растений, роль в сохранении постоянного числа хромосом.

Мейоз — способ деления клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.

Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I. В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), за­тем обмениваются участками. При кроссинговере осуществляется переком­бинация генов. После кроссинговера хромосомы разъединяются.

В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления. В анафазе I к полюсам клетки расходятся хромосомы из каждой гомологичной пары; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке. Затем следует телофаза I — образуются две клетки с гаплоидным числом двухроматвдных хромосом; поэтому первое деление мейоза называют редукционным. После телофазы I следует короткая ин­терфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В ин­терфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.

Второе деление мейоза отличается от митоза только тем, что его прохо­дят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II. В метафазе II двухроматидные хромосомы располага­ются по экватору; процесс идет сразу в двух дочерних клетках. В анафазе П к полюсам отходят уже однохроматидные хромосомы. В телофазе II в че­тырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деле­ния мейоза образуются четыре клетки с гаплоидным набором хромосом (lnlc); второе деление называют уравнительным. Так образуются гаметы у животных и человека или споры у растений.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.