RSS    

   Реферат: Образование среды жизни. Закон РФ об охране окружающей среды

В природе существуют как устойчивые, зрелые, так и неустойчивые, развивающиеся экосистемы. Развитие экосистем происходит на основе смены видов, пока не сформируется такой биоценоз, который будет способен поддерживать в них устойчивый биологический круговорот веществ. Экосистемы способны к самовосстановлению при частичных нарушениях. Эти возможности не безграничны и зависят как от внешних условий, так и от видового разнообразия в окружающей среде.

Биологическое разнообразие как основное условие устойчивости популяций, биоценозов и экосистем

В природе практически нет абсолютно сходных особей, популяций, видов и экосистем. Когда отдельные виды начали исчезать с лица Земли по вине людей, этому сначала не придавали значения, так как видов много, а процессы их вымирания, как установила палеонтология, всегда происходили в природе. Однако в настоящее время обеднение разнообразия жизни под влиянием деятельности человека идет очень быстрыми темпами. Поэтому и с теоретической, и с практической точек зрения очень важно понимать, в чем состоит роль биологического разнообразия. Ответ на этот вопрос можно найти при изучении структуры и функционирования биоценозов. Высокое видовое разнообразие обеспечивает следующие свойства этих сложных систем.

Взаимная дополнительность частей. Как мы видели, в сообществах уживаются те виды, которые делят между собой экологические ниши и дополняют друг друга в использовании ресурсов среды. Например, растения первого яруса в лесу перехватывают 70-80 % светового потока (рис. 34). Во втором ярусе растут деревья и кустарники, которым достаточно 10-20% от полного освещения, а наземные травянистые растения и мхи в таких лесах способны осуществлять фотосинтез всего при 1-2 сотых долях светового потока. Дополняя друг друга, растения полно используют солнечную энергию.

У животных «разделение труда» в биоценозе ярко выражено в использовании разных видов пищи, времени суточной и сезонной активности, размещении в пространстве. Очень существенно дополняют друг друга разные виды грибов в лесных сообществах. Одни из них специализируются на разрушении мертвой древесины, другие - свежеопавших листьев, третьи - корней или шишек, четвертые продолжают разрушение уже полуразложившейся массы. Взаимная дополнительность видов, созидающих и разрушающих органическое вещество, лежит в основе биологических круговоротов.

Взаимозаменяемость видов. Любой вид биоценоза может быть заменен другим, со сходными экологическими требованиями и функциями. Хотя полностью похожих друг на друга видов в природе нет, но многие перекрываются по основным экологическим требованиям, отличаясь лишь деталями. Такие виды обычно заменяют друг друга в похожих сообществах, например, разные виды елей и пихты в темнохвойных таежных лесах или разные виды насекомых-опылителей на лугах. Взаимозаменяемость видов постоянно происходит при колебаниях погодных условий. Так на лугах во влажные годы доминируют короткокорневищные травы, а в сухие - длиннокорневищные, активны разные листогрызущие и хищные насекомые и т. п.

Регуляторные свойства. Способность к саморегуляции - одно из основных условий существования сложных систем. Саморегуляция возникает на основе обратных связей. Принцип отрицательной обратной связи заключается в том, что отклонение системы от нормы приводит в действие силы, направленные на возвращение ее в нормальное состояние. Этот принцип обратной связи очень ярко проявляется во внутрипопуляционных и межвидовых взаимоотношениях в биоценозах. Увеличение численности жертв со временем вызывает увеличение численности хищников и паразитов. Повышение плотности популяции сверх определенных уровней так изменяет связи внутри вида, что падает воспроизводительная способность или усиливается рассредоточение особей в пространстве. Чем разнообразнее биоценозы и чем сложнее структура популяций, тем успешнее осуществляется их саморегуляция.

Надежность обеспечения функций. Главные функции биоценоза в экосистеме - создание органического вещества, его разрушение и регуляция численности видов - обеспечиваются множеством видов, как бы страхующих деятельность друг друга. Разнообразие видов в экосистемах обеспечивает надежность их функционирования. Таким образом, биологическое разнообразие - это главное условие устойчивости всей жизни на Земле. За счет этого разнообразия жизнь не прерывается уже несколько миллиардов лет.

Видовое разнообразие - основа устойчивости живой природы. Оно создает взаимодополняемость и взаимозаменяемость видов в биоценозах, обеспечивает регуляцию численности и самовосстановительные способности сообществ и экосистем. Однако видовое разнообразие одна из составных частей биоразнообразия. Если представить, что человек как биологический вид вдруг остался в одиночестве на Земле, то нетрудно предсказать дальнейший ход событий: нет продуктов питания, растет жесткое ультра - фиолетовое излучение, т. к. оно больше не задерживается озоновым экраном, из-за отсутствия кислорода становится невозможным дыхание, чистой воды нет, и климат не совместим с жизнью. Миллионы лет отмеченное выше поддерживалось биоразнообразием. Из чего же складывается это понятие? Необходимо напомнить и подчеркнуть, что никакие биологические прогрессы не возможны вне биосферы и экосистем. Здесь берут начало три ветви биоразнообразия: генетическое, организменно–видовое и экологическое (рис. 3).


Рис. 3. Структура и уровни биоразнообразия

Каждая ветвь, подразделяемая на уровни, обладающие своими особенностями: ниже организменного, организменного и выше организменного и составляющие предмет изучения таких биологических наук, как генетика, систематика и экология. Биологическое разнообразие представляет собой уникальную особенность живой природы. Именно благодаря ему создается структурно-функциональная организация экологических систем, обеспечивающая их стабильность во времени и устойчивость к изменениям среды, в том числе и в результате антропогенных воздействий поддержание экосистем в устойчивом состоянии одна из первостепенных задач человечества. Поэтому основным понятиям, связанным с сохранением и использованием биоразнообразия, дано правовое толкование в законах Российской Федерации «Об охране окружающей среды», «Об особо охраняемых территориях» и других правовых документах.

Биосфера и ноосфера

Все экосистемы Земли являются только структурными подразделениями, составными частями единой гигантской экосистемы, охватывающей всю поверхность планеты. Эту глобальную экосистему называют биосферой. Термин «биосфера» ввёл в 1875 г. Э. Зюсс, понимавший её как тонкую плёнку жизни на земной поверхности в значительной мере определяющей лик Земли. Учение о биосфере создано в 1926 г. русским геохимиком В. И. Вернадским (1863-1945). Он впервые оценил масштабы влияния жизни на физическую природу. Биосфера, по В. И. Вернадскому, - это общепланетарная оболочка, та область Земли, где существует или существовала жизнь и которая подвергается или подвергалась ее воздействию. Биосфера охватывает всю поверхность суши, моря и океаны, а также ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов. В атмосфере верхние границы жизни определяются озоновым экраном - тонким слоем газа озона на высоте 16—20 км. Он задерживает губительные ультрафиолетовые лучи солнца. Океан насыщен жизнью целиком, до дна самых глубоких впадин в 10-11 км. В глубину твердой части Земли активная жизнь проникает местами до 3 км (бактерии в нефтяных месторождениях). Результаты жизнедеятельности организмов в виде осадочных пород прослеживаются еще глубже. Размножение, рост, обмен веществ и активность живых организмов за миллиарды лет полностью преобразовали эту часть нашей планеты. Всю массу организмов всех видов В. И. Вернадский назвал живым веществом Земли. В химический состав живого вещества входят те же самые атомы, которые составляют неживую природу, но в ином соотношении. В ходе обмена веществ живые существа постоянно перераспределяют химические элементы в природе. За счет фотосинтеза накоплен кислород атмосферы. За счет кислорода возник озоновый экран. Молекулы этого газа состоят из трех атомов кислорода и образуются при действии на молекулярный кислород ультрафиолетовых лучей. Таким образом, жизнь сама создала защитный слой в атмосфере, задерживающий большинство этих лучей.

Благодаря живым существам возникли многие горные породы на Земле. Организмы обладают способностью избирательно поглощать и накапливать в себе отдельные элементы в гораздо большем количестве, чем они есть в окружающей среде. Например, многие морские виды концентрируют в своих скелетах кальций, кремний или фосфор и, отмирая, создают на дне водоемов большие толщи осадочных пород: залежи известняков, мела, кремнистых сланцев, фосфоритов. Такие породы называются органогенными, так как они обязаны своим происхождением живым организмам. Жизнью создан на поверхности суши почвенный слой. В почве так тесно связаны между собой минеральные компоненты, разлагающиеся органические вещества и многочисленные микро - и макроорганизмы, что В. И. Вернадский отнес ее к особым, биокосным телам природы. Такой же биокосный состав имеют и воды Мирового океана, насыщенные продуктами обмена веществ и населенные бесчисленными обитателями. Живые организмы играют большую роль в разрушении и выветривании горных пород на суше. Они - главные разрушители мертвого органического вещества.

Таким образом, за период своего существования жизнь преобразовала атмосферу Земли, состав вод океана, создала озоновый экран, почвы, многие горные породы. Изменились условия выветривания пород, большую роль стал играть микроклимат, создаваемый растительностью, изменился и климат Земли.

Совершая гигантский биологический круговорот веществ в биосфере, жизнь поддерживает стабильные условия для своего существования и существования в ней человека. Живые организмы создают в биосфере круговороты важнейших биогенных элементов, которые попеременно переходят из живого вещества в неорганическую материю. Так образуются глобальные циклы геологического круговорота. Эти циклы делят на две основные группы: круговороты газов и осадочные круговороты. В первом случае главный поставщик элементов - атмосфера (углерод, кислород, азот), во втором - горные осадочные породы (фосфор, сера и др.). Напомним, что все круговороты совершаются в первичных ячейках биосферы - геохимических ландшафтах или биогеоценозах в соответствии с их иерархией, в частности: БГЦ – биогеоценотический комплекс – ландшафт – биом - биогеографическая подобласть - биогеографическая область - экосистемы суши, океана - биосфера. Масштабы, значения и изменения геохимических циклов рассмотрены международным комитетом по проблемам окружающей среды (СКОПЕ) в 1976 г. в работе «Биогеохимические циклы в Биосфере».

С 60-ых годов 20 века появилось множество научных работ, посвящённых математическому моделированию и анализу биосферных процессов с помощью ЭВМ. Первоначально учёные совершенствовали популяционные модели известные с 20-ых годов 20 века – паразит-хозяин, хищник-жертва. Это описано в трудах А. Лотки, В. Вольтерра, Г. Ф. Гаузе, А. Никольсона, А. И. Колмогорова и др. В дальнейшем стали появляться тактические и стратегические модели управления экосистемами. Тактические модели служат для экологического прогноза. Стратегические модели строятся с исследовательскими целями: для вскрытия общих закономерностей функционирования экосистем и биосферы. В последние годы развивается построение моделей эколого-экономического направления для долгосрочного прогнозирования экономического роста и оценки влияния человеческой деятельности на биосферные процессы. К примеру, стало ясно, что современное потребление продукции биосферы достигло 7 % чистой первичной продукции суши, и это уже привело к нарушению биогеохимического круговорота. Необходимо помнить, что КПД природных экосистем низок и не превышает 10 %. В своё время В. И. Вернадский писал: «Раньше организмы влияли на историю тех атомов, которые были нужны им для роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы нужные для техники и создания цивилизованных форм жизни», что и изменило вечный бег геохимических циклов. Термин «ноосфера» - окружающая человека среда, в которой природные процессы обмена веществ и энергии контролируются обществом, ввёл также В. И. Вернадский. Практически с этого времени прошло 80 лет, что же нового приобрело или создало человечество? Прогресс человеческого разума и научной мысли на лицо: человек вышел за пределы биосферы Земли в космос и глубины гидросферы и литосферы. Появились электронные средства связи, хранения и обработки информации и т. д., однако и загрязнение нашего дома стало более масштабным. Развитие человеческого общества можно представить как переход от генетической эволюции (в роли хищника человек неоправданно задержался) к культурной – ноогенезу. В развитии сказанного многое ещё зависит от экологического мировоззрения, просвещения и воспитания. Однако и здесь есть первые шаги. В частности, в России появился журнал «Экология урбанизированных территорий», где публикуются модели и обсуждаются результаты построения принципиально новых – ноосферных – поселений людей в урбанизированных ландшафтах. Несомненно, это стимулирует развитие и формирует новые взгляды в экологии на биоразнообразие, биологический контроль, биоиндикацию и биотестирование среды, в которой живёт человек. Стало ясно, что многие ограничения предельно допустимыми нормами техногенного загрязнения – условны, так как практически нет пороговости при загрязнении, даже малые дозы в последствии становятся ощутимы и губительны для биоты. В целом ощутимых построек ноосферы человечеством пока мало, также не многочисленны и прогнозы ученых (С. С. Шварц «Экологическое прогнозирование» (1979); А. Н. Тюрюканов, В. М. Фёдоров «Н. В. Тимофеев-Ресовский: Биосферные раздумья» (1996) и т. д.).


А

Сопряженные биогеоценозы на профиле долины реки Вятки (на 17, 2 км ширины, окрестности ГПЗ «Нургуш»)

1 - коренной берег, сосново-еловые леса; 2 - болото; 3 - сосново-еловые леса с вырубками и посадками; 4 - болото–сосняки; 5 - речки, протоки; 6 - елово-широколиственные леса; 7 - старицы, озёра; 8 - луга; 9 - русло; 10 - широколиственные леса; 11 - старицы; 12 - протоки; 13 - ивняки, луга; 14 - луга; 15 - наносы на бывшем русле, лиственные и широколиственные леса; 16 - русло; 17 - коренной берег

Б

Рис. Иерархия экосистем: А – долинных; Б – водораздельных


Литература

Дворников М.Г. «Основы общей Экологии»


Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.