RSS    

   Реферат: КСЕ

Исходным пунктом этой теории стал принцип относительности. Классический принцип относительности был сформулирован еще Г. Галилеем: “Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой”.[2] Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции:  “Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущихся сил”.[3]

Из принципа относительности следует, что между покоем и движением - если оно равномерно и прямолинейно - нет никакой принципиальной разницы. Разница только в точке зрения.

Таким образом, слово “относительно” в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в движение о том, что движение или покой - всегда движение или покой относительно чего-то, что служит нам системой отсчета. Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятие покоя и движения  приобретают смысл лишь тогда, когда указана точка отсчета.

Если классический принцип относительности утверждал инвариантность законов механики во всех инерциальных системах отсчета, то в специальной теории относительности данный принцип был распространен также на законы электродинамики, а общая теория относительности утверждала инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных. Неинерциальными называются системы отсчета, движущиеся с замедлением или ускорением.

В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно-временной континуум, пространственно-временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 000 км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, то есть двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль типа фотонной ракеты отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет существенно меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Разница может измеряться даже сотнями и тысячами лет, в результате чего экипаж корабля сразу перенесется в близкое или отдаленное будущее, минуя промежуточное время, поскольку ракета вместе с экипажем выпала из хода развития на Земле.

Подобные процессы замедления хода времени в зависимости от скорости движения реально регистрируются сейчас в измерениях длины пробега мезонов, возникающих при столкновении частиц первичного космического излучения с ядрами атомов на Земле. Мезоны существуют в течении 10-6 - 10-15 с (в зависимости от типа частиц) и после своего возникновения распадаются на небольшом расстоянии от места рождения. Все это может быть зарегистрировано измерительными устройствами по следам пробегов частиц. Но если мезон движется со скоростью, близкой к скорости света, то временные процессы в нем замедляются, период распада увеличивается (в тысячи и десятки тысяч раз), и соответственно возрастает длина пробега от рождения до распада.

Итак, специальная теория относительности базируется на расширенном принципе относительности Галилея. Кроме того, она использует еще одно новое положение: скорость распространения света (в пустоте) одинакова во всех инерциальных системах отсчета.

Но почему так важна эта скорость, что суждение о ней приравнивается по значению к принципу относительности? Дело в том, что мы здесь сталкиваемся со второй универсальной физической константой. Скорость света - это самая большая из всех скоростей в природе, предельная скорость физических взаимодействий. Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорость этих тел всегда складывается с другими скоростями. В этом смысле скорости относительны: их величина зависит от точки зрения. А скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета.

Абсолютность скорости света не противоречит принципу относительности и полностью совместима с ним. Постоянство этой скорости - закон природы, а поэтому - именно в соответствии с принципом относительности - он справедлив во всех инерциальных системах отсчета.

Скорость света - это верхний предел для скорости перемещения любых тел в природы, для скорости распространения любых волн, любых сигналов. Она максимальна - это абсолютный рекорд скорости.

“Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщит телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света”[4]. Поэтому часто говорят, что скорость света - предельная скорость передачи информации. И предельная скорость любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире.

Со скорость света тесно связано решение проблемы одновременности, которая тоже оказывается относительной, то есть зависящей от точки зрения. В классической механике, которая считала время абсолютным, абсолютной является и одновременность.

В общей теории относительности были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Эта теория подвела физические основания под неевклидовы геометрии и связала кривизну пространства и отступление его метрики от евклидовой с действием гравитационных полей, создаваемых массами тел. Общая теория относительности исходит из принципа эквивалентности инерционной и гравитационной масс, количественное равенство которых давно было установлено в классической физике. Кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g , то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Именно на основе принципа эквивалентности масс был обобщен принцип относительности, утверждающий в общей теории относительности  инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных.

Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины, и будем считать, что это - модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд. Эти шарики будут прогибать лист резины тем больше, чем больше масса шарика. Это наглядно демонстрирует зависимость кривизны пространства от массы тела и показывает также, что привычная нам евклидова геометрия в данном случае не действует (работают геометрии Лобачевского и Римана).

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца - достаточно небольшой звезды по космическим меркам - влияет на темп протекания времени, замедляя его вблизи себя. Поэтому если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала ничего нет.  Замедление  вблизи Солнца составляет около 0,0002 с.

Одно из самых фантастических предсказаний общей теории относительности - полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света: чем сильнее тяготение, тем больше увеличивается длина волны и уменьшается его частота. При определенных условиях длина волны может устремится к бесконечности, а ее частота - к нулю.

Со светом, испускаемым Солнцем, это могло бы случится, если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км). Из-за  такого сжатия сила тяготения на поверхности, откуда и исходит свет, возрастает на столько, что гравитационное красное смещение окажется действительно бесконечным.

С нашим Солнцем этого никогда на самом деле не произойдет. Но другие звезды, массы которых в три и более раз превышают массу Солнца, в конце своей жизни и действительно испытывают, скорее всего, быстрое катастрофическое сжатие под действием своего собственного тяготения. Это приведет их к  состоянию черной дыры. Черная дыра - это физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность.

Физики и астрономы совершенно уверены, что черные дыры существуют в природе, хотя до сих пор их обнаружить не удалось. Трудности астрономических поисков связаны с самой природой этих необычных объектов. Ведь  бесконечное  красное смещение, из-за которого обращается в нуль частота принимаемого света, делает  их просто невидимыми. Они не светят, и потому в полном смысле этого слова являются черными. Лишь по ряду косвенных признаков можно надеяться заметить черную дыру, например, в системе двойной звезды, где ее партнером была бы обычная звезда. Из наблюдений движения видимой звезды в общем поле тяготения такой пары можно было бы оценить массу невидимой звезды, и если эта величина превысит массу Солнца в три и более раз, можно будет утверждать, что мы нашли черную дыру.

Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.