RSS    

   Реферат: Клетка

Приспособленность клетки к функционированию в водной среде служит доводом в пользу того, что жизнь на Земле зародилась в воде.

Биологическая роль воды определяется особенностью ее молекулярной структуры, полярностью ее молекул.

К неорганическим веществам клетки, кроме воды, относятся также соли.

Неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. В частности, прочность и твердость костной ткани обеспечиваются фосфатом кальция, а раковин моллюсков - карбонатом кальция.

Органические вещества

       Органические вещества образуют около 20 - 30% состава клетки.

       Биополимеры. К биополимерам относятся углеводы и белки.

Углеводы. В состав углеводов входят атомы углерода, кислорода, водорода. Различают простые и сложные углеводы. Простые - моносахариды. Сложные - полимеры, мономерами которых являются моносахариды (олигосахариды и полисахариды). С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает. Биологическая роль углеводов – см. таблицу ниже.

Биологическая роль углеводов общая формула CnH2nOn

Углеводы

Где содержатся

Биологическая роль Какие белки-ферменты и белки-гормоны действуют на углеводы

Моносахариды:

a)   Глюкоза

b)  Рибоза

В клетках

В сотаве нуклеиновых кислот

Источник энергии

Входит в структуру гена

Ферменты клеточных мембран

Фермент рибонуклеаза

Дисахариды:

a)   Свекловичный сахар

b)  Молочный сахар

В клетках растений

В молоке

Источник энергии

Источник энергии

Ферменты кишечника человека и животных

Ферменты сока поджелудочной железы

Полисахариды:

a)   Крахмал

b)  Гликоген

В клетках растений

В клетках печени

Источник энергии

Источник энергии

Ферменты слюны, сока поджелудочной железы

Белок-гормон инсулин

       Моносахариды - это твердые бесцветные кристаллические вещества, которые хорошо растворяются в воде и очень плохо (или совсем не) растворяются в органических растворителях. Среди моносахаридов различают триозы, тетрозы, пентозы и гексозы. Среди олигосахаридов наиболее распространенными являются дисахариды (мальтоза, лактоза, сахароза). Полисахариды наиболее часто встречаются в природе (целлюлоза, крахмал, хитин, гликоген). Их мономерами являются молекулы глюкозы. В воде растворяются частично, набухая образуют коллоидные растворы. 

Белки - непериодические полимеры, мономерами которых являются аминокислоты. В состав всех белков входят атомы углерода, водорода, кислорода, азота. Во многие белки, кроме того, входят атомы серы. Есть белки, в состав которых входят также атомы металлов - железа, цинка, меди. Наличие кислотной и основной групп обусловливает высокую реактивность аминокислот. Из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны образуют пептидную связь: CO-NN (ее открыл в 1888 году профессор А. Я. Данилевский), поэтому белки называют полипептидами. Молекулы белков - макромолекулы. Известно много аминокислот. Но в качестве мономеров любых природных белков - животных, растительных, микробных, вирусных - известно только 20 аминокислот. Они получили название "волшебных". Тот факт, что белки всех организмов построены из одних и тех же аминокислот - еще одно доказательство единства живого мира на Земле.

Двадцать аминокислот, входящих в состав природных
 белков
("волшебные" аминокислоты)

Аминокислота

Сокращенное
название

Аминокислота

Сокращенное
название

Аланин

Аргинин

Аспарагин

Аспарагиновая кислота

Валин

Гистидин

Глицин

Глутамин

Глутаминовая кислота

Изолейцин

Ала

Арг

Асн

Асп

Вал

Гис

Гли

Глн

Глу

Иле

Лейцин

Лизин

Метионин

Пролин

Серин

Тирозин

Треонин

Триптофан

Фенилаланин

Цистеин

Лей

Лиз

Мет

Про

Сер

Тир

Тре

Три

Фен

Цис

В строении молекул белков различают 4 уровня организации:

1.   Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными пептидными связями;

2.   Вторичная структура - полипептидная цепь в виде спирали. Между пептидными связями соседних витков и другими атомами возникают многочисленные водородные связи, обеспечивающие прочную структуру;

3.   Третичная структура - специфическая для каждого белка конфигурация - глобула. Удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Есть также ковалентные S-S-связи, возникающие между удаленными друг от друга радикалами серосодержащей аминокислоты цистеина;

4.   Четвертичная структура возникает при соединении нескольких макромолекул, образующих агрегаты. Так, гемоглобин крови человека представляет агрегат из четырех макромолекул.

Нарушение природной структуры белка называют денатурацией. Она возникает под воздействием высокой температуры, химических веществ, лучистой энергии и др. факторов.

Роль белка в жизни клеток и организмов:

1.   Строительная (структурная) - белки - строительный материал организма (оболочки, мембраны, органоиды, ткани, органы);

2.   Каталитическая функция - ферменты, ускоряющие реакции в сотни миллионов раз;

3.   Опорно-двигательная функция - белки, входящие в состав костей скелета, сухожилий; движение жгутиковых, инфузорий, сокращение мышц;

4.   Транспортная функция - гемоглобин крови;

5.   Защитная - антитела крови обезвреживают чужеродные вещества;

6.   Энергетическая функция - при расщеплении белков 1 г освобождает 17,6 кДж энергии;

7.   Регуляторная и гормональная - белки входят в состав многих гормонов и принимают участие в регуляции жизненных процессов организма;

8.   Рецепторная - белки осуществляют процесс избирательного узнавания отдельных веществ и их присоединение к молекулам.

Ферменты - белки и биополимеры. Синтезируются в рибосомах. Бывают двух типов: однокомпонентные (состоят только из белка) и двухкомпонентные (из белка и небелкового компонента неорганического [металла] и органического [витамина]). Почти каждая химическая реакция в клетке катализируется особым ферментом. Обязательным этапом в катализируемой реакции является взаимодействие фермента с веществом, превращение которого он катализирует - с субстратом. Образуется фермент - субстратный комплекс. Активный центр - это участок белковой молекулы, который обеспечивает соединение фермента с субстратом и дает возможность для дальнейших превращений субстрата (это или функциональная группа, или отдельная аминокислота). Фермент ориентирует функциональные группы, входящие в активный центр, чтобы проявилась наибольшая каталитическая активность. Ферменты участвуют в синтезе белка, ДНК и РНК. Они содержатся в слюне, в желудочном соке, в каждой клетке.

Липиды - нерастворимые в воде жиры и жироподобные вещества, состоящие из глицерина и высокомолекулярных жирных кислот. Жиры - сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. У растений - в семенах, плодах. Кроме жиров в клетках присутствуют и их производные - стероиды (холестерин, гормоны и жирорастворимые витамины А, D, К, Е, F).

Липиды являются:

1.   Структурными элементами мембран клеток и клеточных органелл;

2.   Энергетическим материалом (1г жира, окисляясь, выделяет 39 кДж энергии);

3.   Запасными веществами;

4.   Выполняют защитную функцию (у морских и полярных животных);

5.   Влияют на функционирование нервной системы;

6.   Источник воды для организма (1кг, окисляясь, дает 1,1кг воды).

Нуклеиновые кислоты. Название "нуклеиновые кислоты" происходит от латинского слова "нуклеус", т. е. ядро: они впервые были обнаружены в клеточных ядрах. Биологическое значение нуклеиновых кислот очень велико. Они играют центральную роль в хранении и передаче наследственных свойств клетки, поэтому их часто называют веществами наследственности. Нуклеиновые кислоты обеспечивают в клетке синтез белков, точно таких же, как в материнской клетке и передачу наследственной информации. Существует два вида нуклеиновых кислот - дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.