RSS    

   Реферат: Кислотные дожди

Главным продуктом таких фото­химических реакций является озон, вызывающий раздражение глаз, нарушающий функции легких и по­вреждающий деревья и урожай. Та­ким образом, степень опасности смо­га в целом определяется концентра­цией озона в атмосфере на уровне Земли. Другими вредными составля­ющими смога являются альдегиды, пероксиацетилнитраты и окись. (Рисунок I)

Ничтожные количества этих вто­ричных загрязнителей в фотохими­ческом смоге достигают пикового уровня сразу пополудни в солнеч­ный день, вызывая у людей раздра­жение глаз и дыхательных путей. Особенно уязвимы люди, страдаю­щие астмой и другими заболевания­ми дыхательных путей, а также здо­ровые люди, работающие на улице между 11 и 16 часами. Чем жарче день, тем больше озона и других со­ставляющих фотохимического смога.

Тридцать лет назад в больших городах, таких, как Лондон, Чикаго и Питсбург, на электростанциях, за­водах и теплоцентралях сжигалось огромное количество серосодержа­щих угля и тяжелой нефти. Зимой такие города страдали от промыш­ленного смога, состоящего главным образом из смеси диоксида серы, взвешенных капелек серной кисло­ты, образовавшейся из части диокси­да серы, и разнообразных взвешен­ных твердых частиц. Теперь уголь и тяжелая нефть сжигаются только в больших бойлерных, где налажен контроль за выбросами вредных ве­ществ или установлены высокие ды­мовые трубы, так что промышлен­ный смог редко является проблемой. Однако в Китае и некоторых восточ­ноевропейских странах, как, напри­мер, в Чехословакии, где большие ко­личества угля сжигаются без соот­ветствующих мер контроля за вы­бросами, ситуация не изменилась.

Местный климат, рельеф и смог. Частота и плотность смога на данной территории зависят от климата и рельефа местности, плотности населе­ния и промышленности, а также от основных видов топлива, используе­мого в промышленности, на тепло­централях и на транспорте. В райо­нах с большим среднегодовым коли­чеством осадков дождь и снег помога­ют очистить воздух от загрязнителей. Ветры также способствуют удалению загрязнителей и приносят свежий воздух, но они же и переносят неко­торые загрязнители на большие рас­стояния.

Холмы и горы создают преграду на пути ветров, в результате чего в низинах в приземном слое увеличива­ется загрязнение воздуха. Высокие здания в больших городах также за­медляют скорость ветра и, соответст­венно, способствуют созданию высо­ких концентраций загрязнителей.

В течение дня солнце нагревает воздух у поверхности земли. Обычно этот теплый воздух расширяется и поднимается, растворяя скапливаю­щиеся внизу загрязнители и унося их вверх в тропосферу. Одновременно воздух из соседних областей высокого давления опускается вниз в образую­щиеся области низкого давления (Рисунок II, левый). Это непрерывное переме­шивание воздуха помогает сохранять загрязнение вблизи поверхности в пределах допустимого уровня.

Но иногда в результате погодных условий теплый воздух натекает на нижерасположенный плотный холод­ный воздух в городском воздушном бассейне или в долине, препятствуя развитию вертикальных движений воздуха. Это явление называется температурной, или термической, инверсией (Рисунок II, правый). В ре­зультате массы теплого воздуха рас­пространяются над регионом и пре­пятствуют выносу загрязнителей. Обычно такие инверсии длятся от одного до нескольких часов, но иногда, в условиях устойчивого ан­тициклона, они могут сохраняться до нескольких дней. В этом случае концентрация загрязнителей воздуха у поверхности земли представляет угрозу здоровью и даже жизни лю­дей. Термические инвер­сии также усиливают вредное воз­действие островов тепла и пыльных куполов, которые образуются над городскими территориями.

Наиболее продолжительные и час­тые термические инверсии характер­ны для городов, расположенных в до­линах, окруженных горами (Донора, штат Пенсильвания), для подветрен­ных склонов горных хребтов (Де­нвер) или побережий (Нью-Йорк). Большие города, насчитывающие не­сколько миллионов жителей и авто­мобилей, расположенные в безветрен­ных районах с преобладанием сол­нечных дней, окруженных с трех сто­рон горами и морем с четвертой, со­здают идеальные условия для фото­химического смога, отягченного час­тыми термическими инверсиями. Именно такая ситуация наблюдается в Лос-Анджелесе, где почти ежеднев­но возникают инверсии, особенно продолжительные летом, и где насчитывается 12 млн. жителей, 8 млн. ав­томобилей и тысячи фабрик. Несмот­ря на самую строгую в мире систему контроля за загрязнением воздуха, Лос-Анджелес занимает первое место по загрязнению воздуха в Соединен­ных Штатах.

Кислотные дожди

Термин «кислотные дожди» ввел в 1872 г. английский инженер Роберт Смит в книге «Воздух и дождь: начало химической клима­тологии». Кислотные дожди, содержащие растворы серной и азот­ной кислот, наносят значительный ущерб природе. Земля, водо­емы, растительность, животные и постройки становятся их жерт­вами. На территории России в 1996 г. вместе с осадками выпало более 4 млн. т серы и 1,25 млн. т нитратного азота. Особенно тре­вожная ситуация сложилась в Центральном и Центрально-Черно­земном районах, а также в Кемеровской области и Алтайском крае, в Норильске. В Москве и Санкт-Петербурге с кислотными дождя­ми на землю в год выпадает до 1500 кг серы на 1 км2. Заметно меньше кислотность осадков в прибрежной зоне северных, западно- и восточносибирских морей. Самым благоприятным регионом в этом отношении признана Республика Саха (Якутия).

При сжигании любого ископаемого топлива (угля, горючего сланца, мазута) в составе выделяющихся газов содержатся диокиси серы и азота. В зависимости от состава топлива их может быть меньше или больше. Особенно насыщенные сернистым газом выб­росы дают высокосернистые угли и мазут. Миллионы тонн диок­сидов серы, выбрасываемые в атмосферу, превращают выпадаю­щие дожди в слабый раствор кислот.

Окислы азота образуются при соединении азота с кислородом воздуха при высоких температурах, главным образом в двигателях внутреннего сгорания и котельных установках. Получение энергии, увы, сопровождается закислением окружающей среды. Дело ослож­няется еще и тем, что трубы теплоэлектростанций стали расти в высоту, и достигают 250—300, даже 400 м, следовательно, выбросы в атмосферу теперь рассеиваются на огромные территории.

Кислотность водного раствора определяется присутствием в нем положительных водородных ионов Н+ и характеризуется концентрацией этих ионов в одном литре раствора C(H+) (моль/л или г/л). Щелочность водного раствора определяется присутствием гидроксильных ионов ОН– и характеризуется их концентрацией C(ОН–).

Как показывают расчеты, для водных растворов произведение молярных концентраций водородных и гидроксильных ионов – величина постоянная, равная

C(H+)C(ОН–) = 10–14,

другими словами, кислотность и щелочность взаимосвязаны: увеличение кислотности приводит к снижению щелочности, и наоборот.

Раствор является нейтральным, если концентрации водородных и гидроксильных ионов одинаковы и равны (каждая) 10–7 моль/л. Такое состояние характерно для химически чистой воды.

Из сказанного следует, что для кислых сред выполняется условие:

10–7 < C(H+) ≤ 100,

для щелочных сред:

10–14 ≤ C(H+) < 10–7.

На практике степень кислотности (или щелочности) раствора выражается более удобным водородным показателем рН, представляющим собой отрицательный десятичный логарифм молярной концентрации водородных ионов:

рН = –lgC(H+).

Например, если в растворе концентрация водородных ионов равна 10–5 моль/л, то показатель кислотности этого раствора рН = 5. При этом изменению показателя кислотности рН на единицу соответствует десятикратное изменение концентрации водородных ионов в растворе. Так, концентрация водородных ионов в среде с рН = 2 в 10, 100 и 1000 раз выше, чем в среде с рН = 3, 4 и 5 соответственно.

В кислых растворах рН < 7, и чем меньше, тем кислее раствор. В щелочных растворах рН > 7, и чем больше, тем выше щелочность раствора.

Шкала кислотности идет от рН = 0 (крайне высокая кислотность) через рН = 7 (нейтральная среда) до рН = 14 (крайне высокая щелочность).

Чистая природная, в частности дождевая, вода в отсутствие загрязнителей тем не менее имеет слабокислую реакцию (рН = 5,6), поскольку в ней легко растворяется углекислый газ с образованием слабой угольной кислоты:

СО2 + Н2О Н2СО3.

Для определения показателя кислотности используют различные рН-метры, в частности дорогостоящие электронные приборы. Простым способом определения характера среды является применение индикаторов – химических веществ, окраска которых изменяется в зависимости от рН среды. Наиболее распространенные индикаторы – фенолфталеин, метилоранж, лакмус, а также естественные красители из красной капусты и черной смородины.

Дождевая вода, образующаяся при конденсации водяного пара, должна иметь нейтральную реакцию, т.е. рН=7. Но даже в самом чистом воздухе всегда есть диоксид углерода, и дож­девая вода, растворяя его, чуть подкисляется (рН 5,6—5,7). А воб­рав кислоты, образующиеся из диоксидов серы и азота, дождь ста­новится заметно кислым. Уменьшение рН на одну единицу озна­чает увеличение кислотности в 10 раз, на две — в 100 раз и т.д.      Мировой рекорд принадлежит шотландскому городку Питлокри, где 20 апреля 1974 г. выпал дождь с рН 2,4, — это уже не вода, а что-то вроде столового уксуса.

Последствия кислотных осадков.

В 70-х гг. в реках и озерах скандинавских стран стала исчезать рыба, снег в горах окрасился в серый цвет, листва с деревьев раньше времени устлала землю. Очень скоро те же явления заметили в США, Канаде, Западной Европе. В Германии пострадало 30%, а местами 50% лесов. И все это происходит вдали от городов и промышлен­ных центров. Выяснилось, что причина всех этих бед — кислотные дожди.

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.