RSS    

   Реферат: Генетика и человек

ДНК не случайно образно называют «нитью жизни». На фотографиях, полученных с помощью электронного микроскопа, она действительно напоминает тонкую ниточку. Чем сложнее организм, тем длиннее у него общая протяженность нити ДНК. Понять эту закономерность не сложно – у более высокоорганизованного существа должно быть больше белков. Следовательно, и протяженность ДНК, с помощью которой хранится информация об этих белках, будет у него больше. У большинства бактерий, например, нить ДНК совсем коротенькая и свернута в виде колечка. Человеческая нить ДНК в длину около метра, чтобы поместиться в клетке ей придется очень сильно скрутиться, наподобие клубка. Такими «клубками» ДНК в наших клетках являются хромосомы. В переводе с греческого хромосома – окрашенное тело. Их действительно удается окрашивать с помощью особых методик, и тогда у делящихся клеток они становятся хорошо видимыми под микроскопом. Неудивительно, что видны они именно в момент деления, ведь в этот, относительно недолгий период времени хромосомы буквально «растаскиваются» по разным концам клетки. Поэтому нить ДНК в это время «смотана» наиболее компактно. У молодой, только что разделившейся клетки, хромосомы уже не видны, ее ДНК «расплетается», разворачивается для того, чтобы все ее гены были доступны для работы. Деление клеток и их работа находятся в определенном противоречии. Часть клеток постоянно делится – их называют стволовыми клетками. Другая же часть, образующаяся в результате таких делений, специализируется на определенной работе и уже не делится вплоть до своей гибели. К неделящимся клеткам относятся, например, мышечные клетки сердца или нервные клетки. НЕ случайно про последние говорят, что они не восстанавливаются. Стволовые клетки постоянно работают в глубине кожи или в стенках кишечника, благодаря чему и происходит регулярное обновление эпидермиса и слизистой выстилки кишок.

Перед началом деления каждая нить ДНК успевает построить свою копию. Зачем эти нити компактно сворачиваются, и получается пара совершенно одинаковых хромосом.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.


Достижения и проблемы современной генетики

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.


Геном человека.

Международные проект «Геном человека» был начат в 1988 г. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн. долларов, а частные компании – и того больше. В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.

Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.

Что же представляет собой основной предмет проекта – геном человека?

Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.

Как же помещаются в ядре такие длиннющие молекулы? Оказывается, в ядре существует механизм «насильственной» укладки ДНК в виде хроматина - уровни компактизации (рис. 1).


Рис. 1. Уровни упаковки хроматина

Первый уровень предполагает организацию ДНК с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, т.е. в 25-30 раз.

Третий уровень компактизации – петельная укладка фибрилл – образование петельных доменов, которые под углом отходят от основной оси хромосомы. Их можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых щеток». Поперечная исчерченность, характерная для митотических хромосом, отражает в какой-то степени порядок расположения генов в молекуле ДНК.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.