RSS    

   Курсовая работа: Озоносфера и ее значение в функционировании климатической системы

Молекула озона нелинейна и имеет структуру треугольника с тупым углом при вершине и равными межъядерными расстояниями. Молекула озона нелинейна и имеет структуру треугольника с тупым углом при вершине и равными межъядерными расстояниями (рис. 1.2.). При обычных температурах озон – газ светло-голубого цвета, при пониженных температурах он превращается в жидкость индиго-голубого цвета с температурой кипения 111,9 °С, в твердой фазе озон образует игольчатые кристаллы густого фиолетово-голубоватого цвета с температурой плавления 192,5 °С. Способность озона О3 и молекулярного кислорода О2 сосуществовать в трех агрегатных состояниях является одной из исключительных особенностей. Чистый озон во всех трех агрегатных состояниях взрывчат.

2. Значение озона в функционировании климатической системы

Озон и климат воздействуют друг на друга. Воздействие озона на климат проявляется, прежде всего, в изменении температуры. Чем больше озона в данном объёме воздуха, тем больше тепла он удерживает. Озон является источником тепла в стратосфере, поглощая ультрафиолетовое излучение солнца и восходящее инфракрасное излучение от тропосферы. Следовательно, уменьшение количества озона в стратосфере приводит к понижению температуры. А это в свою очередь приводит к истощению озона.

Самые крупные потери озона в Арктике и Антарктике происходят зимой и в начале весны, когда полярные стратосферные вихри изолируют воздух в своих пределах. Когда температура воздуха падает ниже -78 °С, формируются облака, состоящие изо льда, азотной и серной кислот. В результате химических реакций на поверхности ледяных кристаллов в облаках выделяются хлорфторуглероды. Из-за воздействия хлорфторуглерода начинается активный процесс разрушения озонового слоя, который приводит к образованию, так называемых «озоновых дыр». Дальнейшее повышение температуры ведет к испарению льда, и озоновый слой начинает восстанавливаться. Весной температура воздуха повышается, лед испаряется, и озоновый слой начинает восстанавливаться. Озоновый слой окружает всю землю, но его толщина на разных широтах не одинакова. Тоньше всего он на экваторе, а на полюсах толще. И хотя озон перемещается воздушными течениями, и его количество в значительной степени зависит от времени года (летом и осенью его больше, а зимой и весной – меньше), это неравномерное распределение сохраняется. С весенним потеплением химические реакции на поверхности кристаллов льда в облаках приводят к образованию активных форм озоноразрушающих веществ из имеющихся там исходных форм.

На рисунке (рис. 2.2.) показано состояние озонового слоя и температуры в стратосфере над Арктикой начиная с 1979 г. Как видно, изменение количества озона тесно связано с температурой стратосферы. С понижением температуры регулярно образуются полярные стратосферные облака со смесью озоноразрушающих веществ в активной форме и резко снижается толщина озонового слоя как на полюсах, так и в глобальном масштабе. Изменения состояния атмосферы ведут год от года к все более резким изменениям температуры.

Озон постоянно образуется и разрушается, однако при некоторых условиях, скорость его разрушения может превысить скорость образования. Как выяснилось, большое влияние на этот процесс оказывает человеческая деятельность. Как вещество крайне реактивное, озон вступает во взаимодействие с хлором, фтором, бромом, оксидом азота и другими веществами. В этом плане очень опасны фреоны, широко используемые в холодильниках, кондиционерах и аэрозольных баллончиках, а также в меньшей степени азотистые удобрения и вещества, возникающие при полетах высотной авиации и запусках ракет. Попадая в атмосферу, все эти изначально неопасные соединения медленно поднимаются вверх, пока не достигают озонового слоя, где оказываются под воздействием УФ излучения. Разлагаясь и высвобождая атомы хлора, брома, азота, они вступают во взаимодействие с озоном. При этом каждый атом хлора или брома разрушает молекулу озона, присоединяя атом кислорода.

Взаимодействие происходит по формуле:

O3+Y=YO+O2

YO+O=Y+O2

где Y=NO, OH, Cl, Br[13]

Впервые вопрос угрозы озоновому слою Земли поднялся еще в далеких 1960-х годах. Тогда считалось, что сверхзвуковые самолеты, выбрасывающие при полете выхлопные газы, состоящие из оксидов азота и водяных паров, могут серьезно повредить озоносфере. Также определенная опасность приписывалась азотным удобрениям. Но обе эти угрозы оказались незначительными. Сверхзвуковая авиация не нашла такого широкого применения, как предполагалось, и в настоящее время представлена только «Конкордом», совершающим рейсы над Атлантикой несколько раз в неделю, и военными самолетами. Азотные же удобрения нестойки и успевают разложиться прежде, чем достигнут стратосферы.

Распределение температуры контролирует динамические процессы в атмосферном газе. Таким образом, вся система циркуляции в стратосфере, включая и вертикальный перенос газа, зависит от распределения озона. И если под влиянием антропогенных процессов распределение озона заметно изменится, должна измениться вся картина динамических процессов, включая и взаимодействие стратосферы и тропосферы.

Расчеты с помощью атмосферных моделей показывают, что если повсеместно уменьшить концентрацию озона в два раза, то в мезосфере произойдет охлаждение атмосферного газа на 20° С. Это охлаждение в большей части стратосферы (18–40 км) составит 6 – 8° С, а на стыке тропосферы и стратосферы (7 – 18 км) составит 2 – 3° С.

Молекулы O3 могут не только поглощать мягкое ультрафиолетовое излучение, но и обладают другими свойствами, существенными для теплового режима атмосферы. Наиболее важное из них – способность поглощать излучение в инфракрасном диапазоне, точнее в полосе с длиной волны примерно 9,6 мкм.

Суть парникового эффекта состоит в том, что поверхность Земли поглощать энергию падающего на неё солнечного излучения (ближнего ультрафиолетового, видимого, инфракрасного – всего, которое до неё дошло, почти не поглотившись в воздухе) и переизлучает эту энергию в виде тепловых лучей сугубо в инфракрасной области. Если бы это инфракрасное излучение не поглощалось в атмосфере и не уходило назад в космическое пространство, на Земле было бы невыносимо холодно. Но этого не происходит потому, что большая часть переизлученной энергии не покидает нижних слоев атмосферы, а поглощается там облаками и различными малыми составляющими. Наиболее активны в этом поглощении две атмосферные составляющие – углекислый газ и пары воды. Именно они обеспечивают задержку в атмосфере большей части инфракрасного излучения. Однако существует так называемое окно прозрачности в полосе 8 – 13 мкм, где суммарное поглощение указанными двумя составляющими (CO2 и H2O) мало. В этой области в роли основного поглотителя выступает озон. Как отмечалось выше, озон имеет сильную полосу поглощения в области 9,6 мкм, которая и обеспечивает захват уходящего инфракрасного излучения в середине окна. Отмечу, что у молекулы озона имеются и другие полосы поглощения в инфракрасной области (например, с длиной волны 13,8 и 14,4 мкм). Но там они накладываются на сильные полосы поглощения H2O и CO2.

В последние два десятилетия человечество все больше беспокоит проблема усиления парникового эффекта из–за увеличения в атмосфере количества CO2. Факт монотонного роста концентрации двуокиси углерода в тропосфере в результате человеческой деятельности (уменьшение площади лесов, сжигании органического топлива, и другие промышленные процессы) установлен с высокой степенью достоверности. Этот рост за последние 20 лет составляет 0,3 – 0,4% в год. Если тенденция роста CO2 в последующие десятилетия сохранится, то удвоение количества CO2 в атмосфере, которое существовало в доиндустриальную эру, должно произойти примерно в середине XXI в. Правда, наиболее оптимистические модели предсказывают такое удвоение лишь к 2100 г. Конечно, реальная картина будет зависеть, прежде всего, от того, как быстро будет расти потребляемое человечеством количество энергии и насколько удастся заменить существующие сегодня источники энергии новыми, чистыми в экологическом отношении.

озон циркуляция разрушение климатический

3. Распределение озона с высотой

Озон имеется в разных слоях атмосферы – приземном слое, тропосфере, стратосфере, мезосфере. В каждом из этих слоев он рождается и погибает по своим законам. В стратосфере озон образуется эффективнее всего, но здесь же он и исчезает быстро. Тропосферный озон называют консервативным. Он существует дольше. Всю атмосферу с озоном рассматривают как единое целое, единую систему, в которой отдельные слои и прослойки являются сообщающимися сосудами. Озон движется не только вверх-вниз, но и горизонтально. В низких и высоких широтах распределение озона с высотой различное. В низких широтах, в тропической зоне, общее содержание озона мало и меняется незначительно. В тропической зоне стратосферный слой озона находится на большой высоте. Его максимум приходится на высоты между 24 и 27 км. В полярной области слой озона в стратосфере расположен ниже, его максимум приходится на 13–18 км. В промежуточной зоне заметны сезонные изменения озона: к весне общее содержание озона увеличивается, а к осени убывает. Озонный слой выполняет роль фильтра-регулировщика: вредным ультрафиолетовым лучам путь к Земле запрещен, полезному ультрафиолетовому излучению с длиной волны 0,3–0,4 мкм – дорога к людям открыта.

Озоновый слой на самом деле не является слоем. Озон распределён практически по всей атмосфере. Но не совсем равномерно.

Как видно из графика, имеется максимум концентрации озона на высотах примерно 20–25 километров. Что соответствует примерно середине стратосферы: Концентрация озона не очень велика, как уже было отмечено, даже если собрать весь озон при нормальных условиях, то его слой будет иметь толщину всего лишь порядка нескольких миллиметров. Тем не менее, этого достаточно для задержания практически полностью наиболее жёстких ультрафиолетовых лучей, которые, тем не менее, не настолько энергетичны, чтоб поглощаться кислородом. И этот диапазон УФ как раз наиболее опасен с биологической точки зрения, так как разрушает ДНК. Изучение изменений концентрации озона в атмосфере за историю Земли показывает, что только с появлением более-менее плотного озонового слоя жизнь смогла выйти из океана, где она была защищена водной толщей от губительного излучения: то есть фактически не только сухопутная жизнь, но и все мы обязаны своим появлением озоновому слою.

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.