RSS    

   Теория устойчивости - (реферат)

Теория устойчивости - (реферат)

Дата добавления: март 2006г.

    Введение

Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А. М. Ляпунов и великий французский ученый А. Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н. Г. Четаев, Е. А. Барбашин, Н. П. Еругин, Н. Н. Красовский.

1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений

    x’ = f ( t , x )
    (1)

с начальными условиями x ( t0 ) = x0 (2) где x = ( x1, x2, .... , xn ) - n - мерный вектор; t О I = [t0, + Ґ [ - независимая переменная, по которой производится дифференцирование;

f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , .... , fn ( t , x ) ) - n - мерная вектор - функция. Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 , если нет специальных оговорок, приводится для случая n = 1.

    x
    0 t
    Рис. 1

Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис. 1) Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонением D x0 начального значения x0 , будем записывать следующим образом: | x ( t ; t0 , x0 + D x0 ) - x ( t ) | = | x ( t ; t0 , x0 + D x0 ) - x ( t ; t0 , x0 ) |.

Определение 1. Решение x ( t ) = x ( t ; t0 , x0) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0, + Ґ [ , т. е. " e > 0 $ d > 0 такое, что " D x0 | D x0 | Ј d Ю | x ( t ; t0 , x0 + D x0 ) - x ( t ) | Ј e " t і t0. Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + Ґ для достаточно малых D x0 , т. е. $ D > 0 " D x0. | D x0 | Ј D Ю | x ( t ; t0 , x0 + D x0 ) - x ( t ) | ® 0 , t ® + Ґ . (3) то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис. 1 ) : все решения x ( t ; t0 , x0 + D x0 ) , близкие в начальный момент t0 к решению x ( t ) (т. е. начинающиеся в пределах d - трубки ) , не выходят за пределы e - трубки при всех значениях t і t0 .

    x
    0 t
    Рис. 2

2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в D- трубке, с течением времени неограниченно приближается к решению x ( t ) (рис. 2). Трубка радиусаD называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах d - трубки, не покидает e - трубку, хотя может и не приближаться к решению x(t).

Определение 2. Решение x ( t ) = x ( t ; t0 , x0) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.

Аналогично определяется неустойчивость в отрицательном направлении. Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы e - трубки (рис. 3). Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т. е. n = 1.

Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис. 4). Выведем маятник из состояния I, отклонив стержень на уголa; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия.

    x
    0 t
    Рис. 3 Рис. 4

Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему

y’ = F ( t, y ). (4) где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0)є 0 " t і t0. Решению x ( t ) системы (1) соответствует нулевое решение y (t) є 0 системы (4). В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т. е. f ( t , 0 ) = 0" t і t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t )є 0 системы (1).

Определение 3. Нулевое решение x ( t ) є0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если" e > 0 $ d = d ( e ) > 0 такое, что " x0 | D x0 | Ј d Ю | x ( t ; t0 , x0 ) | Ј e " t і t0. Если кроме того,

$ D > 0 " x0 | D x0 | Ј D Ю | x ( t ; t0 , x0 ) | ® 0 , t ® + Ґ , то решение x ( t ) є0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .

Определение 4. Нулевое решение x ( t ) є0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т. е.

$ e > 0 $ t1 > t0 " d > 0 x0 № 0 | x0 | Ј d Ю | x ( t ; t0 , x0 ) | > e . Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t )є 0 системы (1) дана соответственно на рис. 5-7.

    x
    t
    0
    Рис. 5
    x
    t
    0
    Рис. 6
    x
    t
    0
    Рис. 7

2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами. Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.

Нормальную автономную систему n - го порядка можно записать в векторной форме : dx / dt = f ( x ). (5)

Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.

Пусть x = x ( t ) - есть решение системы (5). Направленная кривая g , которую можно параметрически задать в виде xi = xi( t ) ( i = 1, .... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , .... , xn), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), .... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , .... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т. е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn- двумерная плоскость. На рис. 8, а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис. 8, б - ее проекция на плоскость, т. е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.

    x2 x2
    0 t 0 x1
    x1
    а) Рис. 8 б)

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.