RSS    

   Теоремы Перрона-Фробеніуса та Маркова - (реферат)

Теоремы Перрона-Фробеніуса та Маркова - (реферат)

Дата добавления: март 2006г.

    Теоремы Перрона-Фробеніуса та Маркова

В роботі дано елементарне доведення відомих теорем Перрона-Фробеніуса та Маркова для матриць другого порядку. Робота має певну методичну цінність і може бути використана на заняттях шкільних гурків та факультативів Відомо [[1]-[10]], яку важливу роль відіграють невід’ємні матриці в математичних моделях економіки, біології, теорії ймовірностей тощо.

Одними з основоположних фактів теорії цих матриць є теореми Перрона. Перрона-Фробеніуса та Маркова. Доведення цих теорем в загальному випадку потребує застосування теорем з таких неелментарних розділів математики, як теорія екстремумів функції багатьох змінних, жорданова нормальна форма тощо. Мета роботи дати елементарне доведення вищезгаданих теорем Перрона, Перрона-Фробеніуса та Маркова для матриць другого проядку, яке цілком доступне і для школярів 9-го класу. Це дозволить, наприклад, на заняттях шкільних математичних гуртків чи факультативів розглянути та проаналізувати змістовні математично-економічні та теоретико-ймовірносні моделі (наприклад, модель Леонтьєва, випадкове блукання на відрізку) з повним доведенням всіх тверджень. Необхідні відомості з теорії матриць.

Матриця розмірів m x n – це прямокутна таблиця чисел з m рядків та n стовпців. Позначається матриця так:

Квадратною матрицею n-го порядку зветься матриця розміром n x n. Важливою числовою характеристикою матриці є її визначник, який позначається detA. Для 2x2 матриці . Матриці А та В однакових розмірів називаються рівними, якщо іх відповідні елементи однакові, що записують так: А=В.

    З матрицями можна здійснювати такі операції:
    Множити на число
    Приклад:
    Додавати матриці однакових розмірів:
    Приклад:
    Множити матриці:
    Приклад:

Взагалі, добутком матриці А розмірів m x r та матриці В розмірів r x n називається матриця С розмірів m x n, яка позначається АВ. Елемент cij цієї матриці – це сума попарних добутків елементів i-го рядка матриці А та елементів j-го рядка матриці В, а саме: Якщо А та В квадратні матриці однакового порядку, то їх завжди можна перемножити.

Квадратна матриця порядку n, у якої єлементи , а інші елементи є нулями, називається одиничною матрицією порядку n. Однична матриця має таку властивість: АЕ=ЕА=А, де А – квадратна матриця порядку n, Е – одинична матриця такого ж порядку. Нехай А – квадратна матриця, тоді матриця А-1 зветься оберненою до матриці А, якщо Не в кожної матриці є обернена до неї, а саме А-1 існує тоді і тільки тоді, коли . Беспосередньо можна первірити, що для

Визначення: Число l називається власним значенням n x n матриці А, якщо знайдется стовпчик такий, що АХ=lХ. При цьому Х називається власним вектором матриці А, що відповідає власному значеннюl.

Якщо власний вектор Х відповідає власному значенню l, то сХ, де с - const, також власний вектор, що відповідає l. Власне значення є коренем характеристичного рівняння . Звідки видно, що не у кожної матриці є власні значення.

Визначення: Матриця А зветься додатною, якщо всі її елементи додатні, це позначається А>0.

Теорема Перрона: Нехай А - додатна матриця, тоді А має додатне власне значення r>0 таке, що: 1. r- відповідає єдиний (з точністю до множення на число) власний вектор. 2. інші власні значення по модулю < r.

3. власний вектор, що відповідає r, можна вибрати додатним (тобто з додатними елементами). Доведення теореми для 2х2 матриць.

    Нехай .
    Тоді .
    Напишемо характеристичне рівняння для матриці А:
    .
    Це квадратне рівніння з дискримінантом:
    І тому
    Тобто твердження теореми 1 і 2 доведені, якщо r=l1.

Знайдемо власний вектор , що відповідає власному значенню l1 з рівності

    Тоді
    , або
    Враховуючи, що
    перепишемо систему у вигляді:

Але і тому рівняння системи пропорціональні, а це означає, що одне з них можна відкинути.

    Знайдемо x1 з першого рівняння системи

Щоб довести, що власний вектор можна вибрати додатним, достатньо перевірити, що, тому що поклавши отримаємо x1>0.

    Враховуючи, що b>0 треба довести, що ,
    але це випливає з того, що , бо cb>0.

Таким чином третє твердження доведено, а з ним доведена теорема. Визначення: Матриця А n-го порядку зветься нерозкладною, якщо однаковим переставленням рядків та стовпців її не можна привести до виду, де А1, А2 - квадратні матриці розмірів k x k та (n-k) x (n-k) відповідно. Для 2х2 матриць це означає, що та Визначення: Матриця А зветься невід’ємною, якщо всі її елементи невід’ємні. Зауваження: Фробеніус довів, що твердження теореми Перрона залишаються в силі для нерозкладних невід’ємних матриць. Це можна довести, просто повторивши наше доведення теореми Перрона для 2х2 матриць у випадку, коли один або обидва діагональних елемента дорівнюють нулю.

Визначення: Квадратна матриця називається стохастичною, якщо 1)

    2)

Теорема Маркова: Нехай для стохастичної матриці P існує натуральне число k0 таке, що (тобто всі елементи додатні). Тоді 1. (існування границі матриці означає, що існує границя кожного її елементу) 2. Матриця - має однакові рядки.

    3. Всі елементи цих рядків додатні.
    Доведення теореми для 2х2 матриць.
    Запишемо стохастичну матрицю у вигляді , де
    Запишемо її характеристичне рівняння: ,
    Це квадратне рівняння з дискрімінантом:
    І тому

З урахуванням маємо , але якщо , то це значить, що p=q=1 або p=q=0, відкіля матриця P буде мати вигляд , або і тоді Pn містить нулі , що суперечить умові. Таким чином . Беспосередньою перевіркою з урахуванням стохастичності встановлюємо, що власному значенню відповідає власний вектор , де x1=x2, тобто, наприклад власний вектор. Знайдемо власний вектор , що відповідає власному значенню . За визначенням

    Звідки
    Згадуючи, що отримуємо

Очевидно, що рівняння системи пропорційні, тому одне з них можна відкинути. Знайдемоy1 з першого рівняння: або звідки , але , бо в протилежному випадку дана матриця мала б вигяд: , а тоді матриця мала б нульовий елемент , що суперечить умові. Тому можна записати, що Доведемо тепер твердження 1 теореми.

Розглянемо матрицю S, стовпцями якої є власні вектори матриці P. Нам необхідно отримати зручну формулу для Pn.

    Позначимо .

Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі або .

    Відкіля і взагалі
    Знайдемо границю Pn:
    Твердження 1 теореми доведено.

Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо . Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність

Для того, щоб довести треба довести, що , треба довести, що та .

    Маємо
    ,
    , тому що p>0 і q >0
    Теорема доказана.

Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:

    Доведення.
    Оскільки
    Зівдки
    Або
    Звідки
    Зокрема, для 2х2 матриці

Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити. В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід’ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова. У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв’язків квадратного рівняння та розв’язків системи двох лінійних рівнянь в залежності від коефіцієнтів. Робота може бути використана при проведенні додаткових занять, присвячених розгляду вибраних неелементарних питань математики, за допомогою методів, які доступні школярам.

    Список літератури:
    С. А. Ашманов. Математические модели и метод в экономике.
    МГУ. 1980

С. А. Ашманов. Введение в математическую экономику. “Наука”. М. , 1984

    Р. Беллман. Введение в теорию матриц. “Наука”. М. 1969
    Ф. Р. Гантмахер. Теория матриц. “Наука”. М. ,1967

Б. В. Гнеденко. Курс теории вероятностей. “Наука”. М. , 1988

С. Карлин. Математические метод в теории игр, программирования и экономике. “Мир”. М. , 1964

Дж. Кемени, Дж. Скелл, Дж. Томпсон. Введение в конечную математику. Иностранная литература. М. 1963

    П. Ланкастер. Теория матриц. “Наука”. М. 1978

Ю. М. Свирежев, Д. О. Логофет. Устойчивость биологических сообществ. “Наука”. М. 1978

    В. Феллер. Введение в теорию вероятностей и ее приложение.
    Т1. “Мир”. М. 1984


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.