RSS    

   Шифросистемы с открытым ключом. Их возможности и применение - (реферат)

p>Как доказано Эвклидом более двух тысяч лет назад, существует бесконечное множество простых чисел. Поскольку алгоритм RSA оперирует с ключами определенной длины, то количество возможных простых чисел конечно, хотя тем не менее очень велико. По теореме о Простых Числах количество простых чисел меньших некоторого n асимптотически приближается к n = ln(n). Следовательно, количество простых чисел для ключа длиной 512 битов или меньше приблизительно составляет 10150. Это больше, чем количество атомов в известной Вселенной. 9. Применение алгоритма RSA на практике

На практике криптосистема RSA часто используется вместе с криптографической системой секретного ключа типа DES для зашифровывания сообщения ключом RSA посредством цифрового конверта. Предположим, что Алиса посылает зашифрованное сообщение Бобу. Сначала она шифрует сообщение по алгоритму DES, используя случайно выбранный ключ DES и затем шифрует ключ DES открытым (public) ключом RSA Боба. Сообщение зашифрованное ключом DES и ключ DES зашифрованный в свою очередь ключом RSA вместе формируют цифровой конверт RSA и отсылаются Бобу. Получив цифровой конверт, Боб расшифровывает ключ DES с помощью своего частного (private) ключа, а затем использует ключ DES, чтобы расшифровать само сообщение. На практике такая схема реализована в оборудовании THALES (Racal), осуществляющем обмен шифрованной информацией по открытым каналам. При начале новой сессии связи два устройства THALES (Racal) DataCryptor 2000 сначала обмениваются ключами DES для этой сессии, шифруя их по алгоритму RSA, а затем шифруют передаваемую информацию ключами DES. Такой метод позволяет объединить преимущества высокой скорости алгоритма DES с надёжностью системы RSA. 10. Применение алгоритма RSA для установления подлинности и цифровых подписей Криптосистема RSA может использоваться также и для подтверждения подлинности или идентификации другого человека или юридического лица. Это возможно потому, что каждый зарегистрированный пользователь криптосистемы имеет свой уникальный закрытый ключ, который (теоретически) больше никому недоступен. Именно это делает возможным положительную и уникальную идентификацию. Предположим, Алиса желает послать подписанное сообщение Бобу. Она хеширует сообщение (применяет к сообщению хеш-функцию), чтобы создать дайджест сообщения, который является как бы “цифровым отпечатком” сообщения. Затем Алиса шифрует дайджест сообщения своим закрытым ключом, создавая цифровую подпись, которую посылает Бобу непосредственно вместе с сообщением. Получив сообщение и подпись, Боб расшифровывает подпись открытым (public) ключом Алисы и получает таким образом даджест сообщения. Затем он обрабатывает сообщение той же хеш-функцией что и Алиса и сравнивает результат с дайджестом сообщения, полученным при расшифровке подписи. Если они совпадают точно, то это означает успешную проверку подписи и Боб может быть уверен, что сообщение действительно послано Алисой. Если же результаты не одинаковы, то это означает, что либо сообщение пришло не от Алисы, либо было изменено при передаче (то есть после того, как Алиса его подписала). Подпись Алисы может проверить любой, кто получил или перехватил это сообщение. Еcли же Алиса хочет сохранить содержание документа в тайне, то она подписывает документ, а затем зашифровывает его открытым (public) ключом Боба. Боб расшифровывает сообщение своим закрытым ключом и проверяет подпись на восстановленном сообщении, используя открытый (public) ключ Алисы. Либо – если, например, необходимо, чтобы посредник мог подтвердить целостность сообщения, не получая доступ к его содерданию – вместо дайджеста открытого текста может быть рассчитан дайджест зашифрованного сообщения. На практике же общий показатель алгоритма RSA обычно много меньше показателя частного и потому проверка подписи осуществляется быстрее чем подписание. Это является оптимальным так как сообщение подписывется только однажды, а проверка подписи может быть неоднократной. Для обеспечения секретности обмена информацией необходимо исключить для нападающего возможность во-первых получить открытое сообщение, соответствующее хешированному, а во-вторых получить два различных хешированных сообщения, имеющих одно значение так как в любом из этих случаев нападающий имеет возможность присоединить к подписи Алисы ложное сообщение. Специально для этого разработаны функции хеширования MD5 и SHA, которые делают такое сопоставление невозможным. Цифровая подпись может сопровождаться одним или несколькими сертификатами. Сертификат – заверенный подписью документ, подтверждающий принадлежность открытого (public) ключа определенному владельцу, благодаря чему предотвращается возможность имитации отправителя. При наличии сертификата, получатель (или третье лицо) имеет возможность удостовериться в принадлежности ключа автору сообщения, то есть ключ позволяет удостоверить сам себя. 11. Использование криптосистемы RSA в настоящее время

Криптосистема RSA используется в самых различных продуктах, на различных платформах и во многих отраслях. В настоящее время криптосистема RSA встраивается во многие коммерческие продукты, число которых постоянно увеличивается. Также ее используют операционные системы Microsoft, Apple, Sun и Novell. В аппаратном исполнении RSA алгоритм применяется в защищенных телефонах, на сетевых платах Ethernet, на смарт-картах, широко используется в криптографическом оборудовании THALES (Racal). Кроме того, алгоритм входит в состав всех основных протоколов для защищенных коммуникаций Internet, в том числе S/MIME, SSL и S/WAN, а также используется во многих учреждениях, например, в правительственных службах, в большинстве корпораций, в государственных лабораториях и университетах. На осень 2000 года технологии с применением алгоритма RSA были лицензированы более чем 700 компаниями. Технологию шифрования RSA BSAFE используют около 500 миллионов пользователей всего мира. Так как в большинстве случаев при этом используется алгоритм RSA, то его можно считать наиболее распространенной криптосистемой общего (public) ключа в мире и это количество имеет явную тенденцию к увеличению по мере роста Internet. 12. Криптосистема RSA в мире

На начало 2001 года криптосистема RSA являлась наиболее широко используемой асимметричной криптосистемой (криптосистемой открытого (public) ключа) и зачастую называется стандартом де факто. Вне зависимости от официальных стандартов существование такого стандарта чрезвычайно важно для развития электронной коммерции и вообще экономики. Единая система открытого (public) ключа допускает обмен документами с электронно-цифровыми подписями между пользователями различных государств, использующими различное программное обеспечение на различных платформах; такая возможность насущно необходима для развития электронной коммерции. Распространение системы RSA дошло до такой степени, что ее учитывают при создании новых стандартов. При разработке стандартов цифровых подписей, в первую очередь в 1997 был разработан стандарт ANSI X9. 30, поддерживающий Digital Signature Standard (стандарт Цифровой подписи). Годом позже был введен ANSI X9. 31, в котором сделан акцент на цифровых подписях RSA, что отвечает фактически сложившейся ситуации в частности для финансовых учреждений. Недостатки защищенной аутентификации (установления подлинности) были главным препятствием для замены бумажного документооборота электронным; почти везде контракты, чеки, официальные письма, юридические документы все еще выполняются на бумаге. Именно это – необходимость элементов бумажного документооборота – не позволяло полностью перейти к электронным транзакциям. Предлагаемая RSA цифровая подпись – инструмент, который позволит перевести наиболее существенные бумажные документо-потоки в электронно-цифровой вид. Благодаря цифровым подписям многие документы – паспорта, избирательные бюллетени, завещания, договора аренды – теперь могут существовать в электронной форме, а любая бумажная версия будет в этом случае только копией электронного оригинала. Все это стало возможным благодаря стандарту цифровых подписей RSA.

    Заключение

В книге сделан обзор наиболее распространенных в настоящее время методов криптографической защиты информации. Выбор для конкретных ИС должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем. Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам: невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры, совершенство используемых протоколов защиты,

    минимальный объем используемой ключевой информации,

минимальная сложность реализации (в количестве машинных операций), ее стоимость, высокая оперативность.

Желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы. Для учета стоимости, трудоемкости и объема ключевой информации можно использовать удельные показатели - отношение указанных параметров к мощности множества ключей шифра. Часто более эффективным при выборе и оценке криптографической системы является использование экспертных оценок и имитационное моделирование. В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

    Источники
    “Криптография без секретов”. С. Баричев
    “Современная криптология“. Дж. Брассард
    “Введение в современную криптологию”. Месси Дж. Л.
    http: //www. racal. ru/rsa. htm
    http: //www. rc-5. narod. ru

Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.