RSS    

   Непрерывное Вейвлет-преобразование - (реферат)

p>В результате “вырисовывается” вполне наглядная картина, иллюстрирующая частотно-временные характеристики сигнала. По оси абсцисс откладывается время, по оси ординат–частота (иногда размерность оси ординат выбирается так: log(1/s), где s-частота), а абсолютное значение вейвлет преобразования для конкретной пары x и s определяет цвет, которым данный результат будет отображен (чем в большей степени та или иная частота присутствует в сигнале в конкретный момент времени, тем темнее будет оттенок).

    Рис 2. Вейвлет преобразование стационарного сигнала.

Данный рисунок показывает результаты вейвлет анализа для сигнала, представляющим из себя наложение двух синусоид различной частоты. Частотные характеристики данного сигнала не меняются во времени (сигнал стационарный), что хорошо видно на верхней части рисунка 2.

    Рис 3. Сравнение методов анализа.

По рисунку 3 удобно сравнить результаты, которые дают преобразование Фурье и вейвлет преобразование. Исходный сигнал изображен на рис (3a). Как видно из рис (3c) преобразование Фурье дает информацию о том спектре частот, который присутствует в сигнале в промежутке времени от 0 до 1 сек. , при этом нам неизвестно когда именно та или иная частота реально присутствовала в сигнале. В то же время вейвлет преобразование (3b) дает исчерпывающую картину динамики изменения частотных характеристик во времени. Все это указывает на то, что вейвлет преобразование существенно более информативно по сравнению с преобразованием Фурье.

3. 3. 1 Методы вычисления непрерывного вейвлет-преобразования.

Существует два разных пути проведения вейвлет преобразования. Речь идет о расчетах во временной и частотной областях. При работе во временной области мы имеем дело с функциями, аргументами которых являются временные параметры, а в случае частотной–частотные. В частотной области используется механизм быстрого преобразования Фурье. [5c]

    3. 3. 1. 1 Во временной области

Прежде всего, нам необходимо определить материнский вейвлет. Допустим, мы выбрали некоторую функцию, удовлетворяющую необходимым условиям: ш0(з), где з – безразмерный период. Итак, нам дана временная серия X, со значениями xn, в моменты времени nО[0, N-1], где N –количество измерений. Каждая величина разделена по времени на постоянную величину dt. Получив основную формулу для материнского вейвлета, необходимо иметь возможность изменять размеры вейвлета. Для этого строится так называемый "масштабированный" вейвлет который будет иметь вид:

    (3)
    s – параметр, обратный частоте.

Вычисление вейвлет преобразования является сверткой искомой временной серии с функцией-вейвлетом. Основная формула имеет вид :

    (4)
    в данном случае (*) – означает комплексно-сопряженное.

Результатом расчета Wn(s) по формуле (4) будет комплексное число. В качестве конечного результата берется абсолютное значение полученного комплексного числа. [5a]

    Блок – схема алгоритма:
    нет
    да
    нет
    да
    3. 3. 1. 2 В частотной области

Вейвлет преобразование можно провести в частотной области. Для этого снова в первую очередь необходимо определить материнский вейвлет. Расчет по данной схеме происходит следующим образом: преобразование Фурье самого вейвлета (в данном случае будем рассматривать вейвлет Морле) сконцентрировано вокруг некоторой выделенной частотыw0 ? 0. Поэтому преобразование Фурье вейвлета, растянутого в s раз, будет сконцентрировано вокруг частотыw0/s (см рис. 4).

    Рис 4. Преобразование Фурье функции вейвлета.

Так как свертка функций эквивалентна их перемножению в частотной области, “строка” s = const на изображении вейвлет преобразования показывает эволюцию изучаемой функции на частотах, близкихw0/s. То есть умножение Фурье-спектра исходной функции на пик в точке w0/s в частотной области (то есть на Фурье-образ растянутого вейвлета) вырезает из этой функции все то, что дает вклад в ее спектр на частотах, близкихw0/s. В результате получается развертка спектрального компонента во времени. [1] Основные формулы имеют вид:

    (5)

где (*) – означает комплексно-сопряженное, а знак (^) – преобразование Фурье.

    (6)
    (7)
    Блок – схема алгоритма:
    нет
    да
    нет
    да
    3. 3. 2 Выбор материнского вейвлета

В качестве материнского вейвлета подходит любая функция, удовлетворяющая двум вышеуказанным условиям. Для реализации алгоритма в качестве анализирующего вейвлета было решено воспользоваться вейвлетом Морле (рис. 5). Это было сделано по трем причинам:

вейвлет Морле один из наиболее популярных [1] и широко применяется он обладает значительной наглядностью

он прост в вычислительном плане, что ускоряет работу алгоритма

    рис 5. Вейвлет Морле.

Фактически вейвлет Морле является произведением комплексной синусоиды на гауссиан.

    , (8)

где y является значением вейвлет функции с безразмерным периодом h, а w0 - волновой параметр (при реализации w0=6). Необходимо также отметить, что вейвлет Морле является комплекснозначным, то есть имеет действительную и мнимую части.

4 ОПРЕДЕЛЕНИЕ УЗЛОВЫХ ТОЧЕК ЭКГ НА ОСНОВЕ НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ

    4. 1 Стандарты описания и обозначения ЭКГ.

Электрокардиограмма (ЭКГ) человека –сигнал, считываемый в результате распространения волны деполяризации и реполяризации по сердечной мышце. Электрокардиограмма (ЭКГ) представляет собой некоторый сигнал, имеющий пять характерных пиков - P, Q, R, S и T : Обозначенные особенности (пики и интервалы) и являются стандартами описания электрокардиограммы человека.

    4. 2 Постановка задачи идентификации.

По временным и амплитудным характеристикам пиков и интервалов врач может определить наличие тех или иных заболеваний у исследуемого пациента. Наиболее важную информацию несет пик R, в частности, именно по этому пику можно найти частоту сердечных сокращений.

В зависимости от конфигурации электродов на теле пациента различают, так называемые, отведения. В медицинской практике используются 12 стандартных отведений, 8 из которых линейно независимы, а еще 4 являются их линейной комбинацией.

В линейных методах для определения временных характеристик ЭКГ (то есть для решения задачи идентификации) обычно используют второе отведение. Под задачей идентификации, обычно, понимают вычисление временных положений пиков. Также определяют частоты, присутствующие в сигнале, так как, например, присутствие в сигнале определенных высокочастотных компонент может свидетельствовать о ненормальной работе сердца. Поэтому появилась необходимость использования методов частотного анализа, одним из которых является вейвлет-преобразование.

    4. 3. Построение модели идеальной ЭКГ

В медицинских источниках есть сведения о параметрах ЭКГ здорового человека. Обычно эти данные и являются отправной точкой при анализе очередной электрокардиограммы. Для выработки подходов к автоматической идентификации нарушений в работе сердца необходимо построить модель сигнала В результате в ходе выполнения работы были построены две модели идеальной ЭКГ. Первая– для системы Matlab. Вторая –в рамках спецификации компьютерного кардиологического комплекса для анализа ЭКГ человека (для модуля “Vision”). В обоих случаях модель представляет собой одномерный массив чисел, с частотой дискретизации 225 Гц. Длительность выбрана из расчета 2-3 сердечных сокращений.

    4. 4. Анализ модели ЭКГ.

Процедура анализа модели дает представление об эффективности и целесообразности применения соответствующих программных средств и алгоритмов с целью решения той или иной задачи. В связи с этим данному разделу уделено особое внимание.

    В системе Matlab.

В системе Matlab с использованием стандартных средств данной системы построена модель двух сокращений сердечной мышцы. Графически она имеет следующий вид:

    рис 7. Модель ЭКГ в системе Matlab.

Результаты применения аппарата непрерывного вейвлет-преобразования к данной модели выглядят следующим образом:

    рис 7. Вейвлет-преобразование в Matlab.
    С использованием “Vision”.

Модель электрокардиограмы в данном случае имеет те же параметры, однако ее длительность увеличена до 3 секунд. Результаты ее обработки в модуле “Vision” выглядят следующим образом:

    рис 8. Вейвлет-преобразование в “Vision”.

В данном случае темный оттенок свидетельствует о присутствии соответствующей частоты в сигнале в данный момент времени. Частота, в максимальной степени присутствующая в сигнале, выделена особо.

    Сравнительный анализ полученных результатов.

Результат, полученный в среде Matlab хорошо локализует особенности ЭКГ, однако возникают проблемы с “чтением” масштаба как по временной оси, так и по частотной. Видно, что продвижение по времени осуществляется не по секундам (или другим временным единицам), а по индексу в массиве, содержащим сигнал. О частотных характеристиках сигнала можно судить лишь приблизительно, ввиду их значительной “размазанности” (см приложение 1. ). Все это позволяет сделать вывод о том, что аппарат непрерывного вейвлет-преобразования в среде Matlab не слишком эффективен для решения задачи идентификации.

“Vision” дает наглядную частотно-временную развертку, позволяющую быстро и без дополнительных расчетов определить степень присутствия той или иной частоты в конкретный момент времени. Этому в определенной степени способствует удобный масштаб (Гц, Сек). Помощь при решении задачи идентификации оказывает механизм выделения максимально присутствующей частоты (см. рис 8). Неудобство составляют небольшие искажения в области малых времен, связанные с особенностями непрерывного вейвлет-преобразования.

    5. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ
    5. 1. Структура программы

Программа содержит несколько модулей выполняющих различные функции: описание формата данных, прорисовка “миллиметровки” на которую непосредственно наносится ЭКГ, вычисление непрерывного вейвлет-преобразования, визуализация частотно-временной развертки.

“Vision” читает файлы формата “*. 1sf”, содержащие записанную на кардиографе электрокардиограмму. При непосредственном считывании сигнал автоматически отображается в окне на “миллиметровой бумаге”. С помощью полосы скроллинга можно просмотреть все двенадцать отведений. На странице “Анализ” представлены необходимые инструменты для построения частотно-временного спектра. Имеется возможность выбора отведения для анализа (1-12), по умолчанию предлагается второе, как наиболее часто используемое. При проведении анализа измеряется время продолжительности процесса.

    5. 2. Форматы данных

Формат файла “*. 1sf” в начале содержит заголовок, который описывает параметры, а также форму записи электрокардиограммы.

    Здесь используется структура имеющая вид:
    type
    OtvData = array [0...MaxArrayOtv] of SmallInt;
    OtvPointer = ^ OtvData;
    OtvNumber = array [0...MaxNumberOtv] of OtvPointer;
    OtvYLineP = array [0...MaxNumberOtv] of Integer;
    PtrOtvYLineP = ^ OtvYLineP;
    DataPointer = ^ OtvNumber;
    LocationType = (Vertical, Horizontal);

WorkStyleType = (Standart12, Franc, Aculinichev, Reserved); ECGType = record

    Frequency : Word;
    Time : Single;
    OtvQuantity : Byte;
    Location : LocationType;
    WorkStyle : WorkStyleType;
    MultipleCoef : Single;
    end;

Frequency – частота съема ЭКГ, Time – продолжительность съема, OtvQuantity – количество отведений, Location – формат записи (Vertical –предусматривает параллельную запись всех отведений, применяется при считывании данных с кардиографа, Horizontal–последовательная запись отведений: сначала первое, затем второе и т. д. ), MultipleCoef– коэффициент числового ряда сигнала.

    5. 3. Оценка временных затрат

Основными критериями, определяющими скорость работы программы являются: частота съема ЭКГ и параметры аппаратной части.

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.