RSS    

   Математическое моделирование и оптимизация в химической технологии - (реферат)

Математическое моделирование и оптимизация в химической технологии - (реферат)

Дата добавления: март 2006г.

    МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ
    ОрёлГТУ
    Кафедра
    “Высшей математики”

Математическое моделирование и оптимизация в химической технологии.

    Выполнил: Мартынов Е. Н.
    Группа 21-ТМ
    Проверил: Шмаркова Л. И.
    Орёл 2000
    ОрелГТУ 2000г.

На химических заводах и комбинатах из сырья минерального, растительного или животного происхождения и различных промежуточных продуктов их переработки производят свыше миллиарда тонн в год химической продукции сотен тысяч наименований. При огромных различиях в масштабах производства (от десятков тонн до десятков миллионов тонн в год) и номенклатуре продукции все химические предприятия имеют общие принципы построения и общие направления развития и совершенствования. Любое химическое производство включает технологические стадии приема и подготовки сырья, химического превращения разделения реакционной массы, выделения целевого продукта, его очистки, отгрузки и отправки потребителю, а также очистки и переработки отходов и выбросов. Кроме сырья химические производства в значительных количествах потребляют пар воду, электроэнергию.

Эффективность химического производснва определяется экономическими показателями, и ее повышение достигается различными методами, одним из которых является метод математического моделирования.

Важнейшими характеристиками работы промышленного химического реактора являются удельная производимость (количество целевого продукта, образующегося в единицу времени в единице объема реактора) и селективность (доля превращенного сырья, использованного на образование целевого продукта). Для достижения наилучших экономических результатов необходимо добиваться возможно более высоких значений этих показателей. Для этого необходимо выбрать соответствующие условия протекания процесса с использованием его математической модели, который основан на использовании законов природы, лежащих в основе химических и физических процессов, протекающих в реакторе и других аппаратах различных технологических стадий. К ним относятся уравнения химической кинетики и термодинамики, описывающие скорости образования основных и побочных продуктов реакции и состав реакционной массы как функцию температуры, давления, начальных концентраций реагентов и степени их конверсии, уравнения гидродинамических, тепловых и массообменных процессов, сопровождающих реакцию или протекающую в отдельных аппаратах. Эти уравнения используют затем для построения функции себестоимости или дохода связывающие эти критерии с параметрами процесса. Рассмотрим на конкретном примере решение проблемы оптимизации химико технологического процесса с использованием простейших моделей. В качестве примера решим задачу подбора параметров процесса для обеспечения максимальной производительности.

Предположим что производство продукта Bобразующегося по реакции АВ. функционирует с 40-х годов по старой технологии. Согласно производственному регламенту, реакция проводится в периодическом реакторе, в который загружается раствор исходного реагента А с начальной концентрацией СА, 0 =1моль/л. В количестве V=100л. реакционная масса термостатируется с помощью теплообменных устройств реактора (рубашка змеевик) в течение времени t= 3ч. За это время часть исходного реагента А превращается в продукт реакции В. При этом степень конверсии Х исходного реагента А в В:

    (1)

где СА и СВ – концентрации А и В (моль/л) в реакторе в момент времени t=3ч. При достижение заданной конверсии реакционная масса охлаждается, продукт реакции В отделяется, а не превращенный исходный реагент А попадает в отходы производства. Суммарное время загрузки и выгрузки реакционной массы составляет t0=1 ч.

Для таких регламентных показателей загрузки реагента А для проведения одной операции составляет nА, 0 =V . СА, 0=100 моль, а количество образовавшегося за время реакции продукта nB= nA, 0. X=100 . 0, 75=75 моль. Отсюда часовая производительность П установки, выраженная в молях продукта В, полученного в единицу времени :

    моль/ч, или
    18, 75 . 24 = 450 моль/л . ч

Для решения поставленной задачи максимальной производительности проведем исследования кинетики реакции АВ. Находим, что ее скорость описывается кинетическим уравнением второго порядка:

     моль/л . ч (2)

с константой скорости k = 1 л/моль. ч. Уравнение (2) представляет собой в данном случае математическую модель описанного выше периодического реактора. Воспользуемся этой моделью для определения степени конверсии Х и времени t, обеспечивающих максимальную производительность установки. Очевидно, что такое время существует, поскольку при малом времени реакции t, несмотря на высокую скорость реакции (СА близко к СА, 0), общая производительность установки мала из – за большой доли непроизводительных затрат времени t0. К тому же при большом времени реакции t доля непроизводительных затрат снизится и скорость реакции из– за малой концентрации СА к концу реакции (см. ур. 2). Для определения оптимальных значений Х и t выразим через СА через Х (СА=СА, 0( 1 - Х )), подставим в уравнение (2)

    и проинтегрируем
    или

Подставив приведенные выше значения k и CA, 0 в последнее уравнение, получим

    (3)

Запишем теперь уравнение для расчета производительности установки. Для этого количество молей продукта В, производимых за одну операцию, nB=VCB=VCA, 0=100X

    разделим на время операции t+t0 :
    моль/ч.
    Используя соотношение (3) получим
    П=100Х( 1 – Х)

Теперь легко найти оптимальное значение Х для обеспечения максимального значения П. Для этого продиференцируем П по Х и приравняем производную нулю:

Отсюда оптимальное значение Х=0. 5, а максимальное значение производительности, согласно (5), П = 25 моль/ч. или 25*24 = 600 моль/сут, что на 33, 3 % выше регламентного показателя.

В целом на производстве основная доля затрат приходится на сырье (70%) и энергию ( до 40%). Снижение их расхода на еденицу продукции дает наибольший экономический эффект. Кардинальный путь снижения этих затрат состоит в использовании новых технологий, нодополнительного снижения затрат на производстве достигают оптимизацией процессов на всех технологическх стадиях.

1. Темкин О. Н. Промышленный катализ и экологические безопасные технологии // Cоросовский Образовательный Журнал. 1997. №3. С. 42-50.

2. Швец В. Ф. Совершенствование химических производств // Cоросовский Образовательный Журнал. 1997. №6. С. 49-55.

3. Неймарк Ю. И. Простые математические модели и их роль в постижении мира // Cоросовский Образовательный Журнал. 1997. №3. С. 139-143.


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.