Лабораторные работы по экономико-математическому моделированию - (реферат)
Лабораторные работы по экономико-математическому моделированию - (реферат)
Дата добавления: март 2006г.
ЛАБОРАТОРНАЯ РАБОТА №1
Системы уравнений межотраслевого баланса.
Вариант №21
Цели:
Выработать у студентов навыки построения математических моделей межотраслевого баланса в статистических случаях и оптимизации моделей в рамках межотраслевого баланса. Научиться делать выводы в рамках построения моделей.
Задание:
Найти объемы выпуска продукции по каждой из отраслей, предварительно обосновав сущность нестандартного решения.
Рассчитать новый план выпуска продукции, при условии, что конечный спрос на продукциюU-ой и -ой отраслей возрос соответственно на 85 и 97 единиц. Вычислить абсолютные и относительные приросты объема, выполненные по каждой из отраслей. Скорректировать новый план, с учетом того, что отрасль не может увеличить объемы выпуска своей продукции более чем на 2 единицы.
Рассчитать матрицу полных затрат.
Исходные данные:
A =
0. 02
0. 01
0. 01
0. 05
0. 06
0. 03
0. 05
0. 02
0. 01
0. 01
0. 09
0. 06
0. 04
0. 08
0. 05
0. 06
0. 06
0. 05
0. 04
0. 05
0. 06
0. 04
0. 08
0. 03
0. 05
C =
235
194
167
209
208
, , .
0) Проверим матрицу А на продуктивность:
Матрица А является продуктивной матрицей.
(J-A) =
J – единичная матрица;
A – заданная матрица прямых затрат;
- вектор (план) выпуска продукции, подлежащей определению;
- вектор конечного спроса.
Произведем расчеты на PС, используя метод Гаусса.
; ;
;
;
;
Используя Симплекс-метод, получим:
2)
;
;
Решение:
3) Скорректировать новый план, с учетом того, что отрасль не может увеличить объем выпуска своей продукции, более чем на 2 единицы.
Подставляя значение в исходную систему уравнений, получим: ;
;
;
Решаем систему уравнений методом Гаусса:
4) Рассчитаем матрицу полных затрат.
Произведем обращение матрицы:
.
Матрица, вычисленная вручную:
Вывод: Видно, что несмотря на сходство этих матриц, полученные приближенные значения довольно грубы.
Рассчитаем деревья матрицы:
ЛАБОРАТОРНАЯ РАБОТА №2
Оптимизационная модель межотраслевого баланса.
Зная запасы дополнительных ресурсов (r), нормы их затрат (D) на производство продукции каждой отрасли и цены реализации конечной продукции (p), рассчитать объемы производства продукции, обеспечивающие максимальный фонд конечного спроса. Вычислить конечный спрос и провести анализ полученного решения: относительно оптимальности;
статуса и ценности ресурсов;
чувствительности.
Рассчитать объем производства.
Исходные данные:
D =
0. 3
0. 6
0. 5
0. 6
0. 6
0. 9
0. 5
0. 8
0. 1
0. 9
0. 4
0. 8
1. 1
0. 2
0. 7
= 564
298
467
= (121 164 951 254 168)
Требуется максимизировать цену конечного спроса;
=
:
, при ограничениях:
Решая задачу на ЭВМ, симплекс-методом, получим:
Решим соответствующую двойственную задачу:
;
;
;
Решая задачу на ЭВМ, симплекс-методом, получим:
Проведем анализ результатов:
1) Оптимальность:
Оптовая цена конечного спроса:
=
т. е. С1=336. 67, С2=-26. 1275, С3=353. 8225, С4=-48. 6875, С5=-41. 29, отрицательные значения говорят о том, что продукция отраслей необходимая для функционирования.
2) Статус и ценность ресурсов:
Ресурс
Остаточная переменная
Статус ресурса
Теневая цена
1
x6 = 21, 67
недефицитный
0
2
X7 = 88, 96
недефицитный
0
3
X8 = 0, 26
недефицитный
0