RSS    

   Кунсткамера математики - (реферат)

p>Но характерной чертой математики является то, что наряду с созданием новых методов решения практических задач она изучает и оттачивает применяемый ею инструментарий, для каждого возникающего понятия ищет наиболее широкую и естественную область его применимости, для каждой доказанной теоремы–наиболее общие условия, при которых она справедлива. И это не пустые занятия математических снобов, а необходимость. Только установив понятия и теоремы в наибольшей общности, освободив их от ненужных ограничений, связанных с той конкретной задачей, из которой они возникли, можно увидеть связи между далекими друг от друга областями науки, научиться применять созданные методы в ситуациях, не имеющих на первый взгляд ничего общего с первоначальными источниками этих методов.

Поэтому столь очевидные, казалось бы, понятия, как длина, площадь, объем (позднее все эти понятия стали называть одним словом–мера), были подвергнуты тщательнейшему анализу. Одна из первых работ по уточнению понятия меры принадлежала Жордану. В течении многих десятилетий он читал в Париже курс математического анализа, построенный на самых точных определениях, безупречных доказательствах и строжайшей логике. И, конечно, он не мог пользоваться в этом курсе расплывчатым понятием площади. Придуманное им определение площади можно сформулировать так: площадь фигуры–это число, которое лежит между множеством площадей многоугольников, содержащихся в этой фигуре, и множеством площадей многоугольников, содержащихся в этой фигуре, содержащих ту же фигуру. Оказалось, что площадь по Жордану имеют те и только те плоские фигуры, граница которых имеет нулевую площадь. К сожалению, слишком много фигур не поддавалось измерению по Жордану; в частности, нельзя было измерить описанные выше неквадрируемые области. За решение возникших проблем взялись молодые ученые, вдохновленные лекциями Жордана. Одно из первых определений, применимых к весьма широкому классу фигур, предложил в конце XIX в. Эмиль Борель. Он заметил, что все возникавшие в науке фигуры на прямой, плоскости и в пространстве могли быть получены из простейших фигур–отрезков, квадратов и кубов с помощью двух основных операций: образования дополнения к множеству и объединения счетной совокупности множеств (в частности, как мы видели выше, таким путем получаются все замкнутые множества). Чередуя эти операции и продолжая такой процесс трансфинитным образом, можно получать на каждом шагу все более сложные множества, названные в честь Бореля борелевскими или иначе В-множествами (отметим что применяя идею Зенона можно получить каждое такое множество за конечный промежуток времени, удваивая на каждом шагу скорость применяемых операций).

Оказалось что любому борелевскому множеству можно приписать меру исходя из следующих двух принципов:

А) если множество А представимо в виде объединения счетной совокупности подмножеств, имеющих меру, причем никакие два из них не имеют общих точек, то мера всего множества равна сумме ряда, составленного из мер подмножеств; Б) мера дополнения к подмножеству, имеющему меру, получается путем вычитания меры этого подмножества из меры целого.

Из принципов Бореля вытекало, в частности, что любое счетное множество имеет нулевую меру–ведь оно является объединением счетной совокупности точек, а мера каждой из этих точек равна нулю.

К сожалению, позднее выяснилось, что предложенный Борелем процесс измерения множеств обладал существенным недостатком. Дело в том, что одно и тоже множество может быть разными способами составлено из простейших, а потому предстояло доказать, что все эти способы дадут одно и то же значение для меры данного множества. Такого доказательства Борель не смог получить. Иначе подошел к проблеме измерения множеств начинавший в те годы свою научную деятельность Анри Лебег. Уже первые работы Лебега разгневали математиков классического направления. Само название одной из них“О нелинейных развертывающихся поверхностях” казалось им столь же противоестественным, как, например название “О газообразном льде” для физики или “О рыбообразных слонах”для биолога. Самый слабый студент знал, что любая поверхность, которую можно развернуть на плоскость (цилиндр, конус и т. д. ), соткана из прямых линий, то есть может быть получена движением прямолинейной образующей. Но все дело было в том, что молодой автор по иному понимал развертывающиеся поверхности, чем геометры-классики.

Он считал такими не только поверхности, получаемые аккуратным изгибанием листа бумаги, но и поверхности, которые получатся, если этот лист бумаги скомкать (поясняя свою работу одному из друзей, Лебег сказал: “Представь себе скомканный носовой платок”). Он доказал, что кусок плоскости можно так “скомкать”, что после этого на нем не оказалось ни одного прямолинейного отрезка. Разумеется, получившаяся поверхность вся состояла из складок и изломов. Поэтому ее и пропустили геометры, классифицированные развертывающиеся поверхности: они занимались лишь гладким случаем.

От изучения произвольных развертывающихся поверхностей Лебег перешел к общему вопросу, как определить площадь поверхности, если эта поверхность не является гладкой, если к ней нигде нельзя провести касательную плоскость. Для скомканной развертывающейся поверхности задача решается просто: надо расправить ее и подсчитать площадь получившегося куска плоскости. Но этот ответ нельзя было получить по формулам, которые давала классическая математика: они годились лишь для гладких поверхностей.

Не удалась бы и попытка измерять площади поверхностей, вписывая в них многогранники и переходя к пределу при уменьшении размеров всех граней. Немецкий математик Г. Шварц показал, что таким путем нельзя найти площадь самого обычного цилиндра–вписанный в него многогранник может оказаться настолько складчатым, что площадь его поверхности куда больше площади цилиндра. Лебегу удалось придумать определение площади поверхности, которое не требовало проведения касательных плоскостей, но в то же время обходило все трудности, связанные с“гармошкой Шварца”. Решая эту частную задачу, Лебег пришел к общим идеям о том, что такое мера множества, как измерять длины, площади, и объемы самых причудливых фигур. Взяв от Бореля идею суммирования рядов, он видоизменил определение, предложенное Жорданом, разрешив использовать кроме многоугольников и фигуры, получаемые из них с помощью объединения счетных совокупностей. Именно, назовем фигуру е-покрываемой по Лебегу, если существует счетная система многоугольников, объединение которых покрывает эту фигуру, причем сумма ряда, составленного из их площадей меньше, чем е. Далее, назовем множество X измеримым по Лебегу, если для любого е>0 его можно представить в виде многоугольника Ае, к которому присоединено одно е-покрываемое множество и от которого отброшено другое е-покрываемое множество. Если меру многоугольника А обозначить через |А|, то ясно, что мера множества X должна быть заключена между числами|Ае| - е и |Ае|+е. Оказалось, что для измеримых по Лебегу множеств всегда существует одно и только одно число, обладающее этим свойством, какое бы е>0 мы ни выбрали и какой приближающий многоугольник Ае ни взяли. Это-то число и называют мерой Лебега множества Х. После создания понятия меры Лебега оказалось, что для нее нет никаких осложнений, причем по Лебегу можно измерить все встретившиеся до того в науке множества. Позднее были построены примеры неизмеримых множеств, но они используют так называемую аксиому выбора, о которой будет идти речь ниже. Построенные с ее помощью примеры не являются конструктивными. Поэтому можно сказать, что Лебег решил проблему измерения всех множеств, которые могут встретиться в практической работе математиков.

С помощью введенного им понятия меры Лебег сумел найти интегралы всех разрывных функций, которые можно было построить известными в то время методами (интеграл Лебега).

Триумф идей Лебега привел к тому, что даже один из вождей математиков –классиков Гастон Дарбу изменил свое мнение и, выступая в 1908г. на Математическом конгрессе в Риме, говорил о пламенном и пытливом духе математики ХХ в. , о науке, ведущей свои изыскания в абсолютно новой области с неизведанными перспективами. Он подчеркнул, что наука ХХ в. не боится атаковать основы построений, которые столь долго казались непоколебимыми. Позднее идеи, приведшие к созданию меры и интеграла Лебега, позволили А. Н. Колмогорову построить аксиоматику теории вероятностей, а Норберту Винеру– определить понятия меры и интеграла для пространств, состоящих из функций. Работу надо не рецензировать, а печатать! Урысон доказал много интереснейших теорем, связанных с введенным им понятием размерности. Но одну самую главную теорему ему никак не удавалось доказать: не получалось доказательство того, что самый обычный куб имеет размерность 3. После длительных усилий он нашел замечательный выход из положения, придумав новое определение размерности. Мы не будем детально излагать это определение, а поясним его на простейших фигурах.

Если взять отрезок или окружность, то их можно разбить на сколь угодно малые части так, что каждая точка принадлежит не более чем двум кусочкам (рис. 33). При этом надо брать кусочки вместе с их границами (то есть конечными точками). Квадрат уже так разбить нельзя. На первый взгляд кажется, что при разбиении квадрата на куски всегда будут точки, принадлежащие четырем частям (рис. 34, а). Но если уложить части так, как кирпичи на стройке, то удается добиться чтобы каждая точка принадлежала не более чем трем различным частям (рис. 34, б). Точно так же у куба есть разбиение на маленькие параллелепипеды при котором каждая точка принадлежит не более чем четырем параллелепипедам. Именно это свойство и принял Урысон за новое определение размерности. Фигура называется имеющей размерность n, если ее можно разбить на сколь угодно малые замкнутые части так, чтобы ни одна точка не принадлежала n+2 различным частям, но при

    Рис. 33 Рис. 34

любом достаточно мелком разбиении найдутся точки, принадлежащие n+1 различным частям.

Используя это определение размерности, Урысон доказал что размерность квадрата равна 2, куба–3 и т. д. А потом он показал, что это определение равносильно первоначально данному.

Построенная Урысоном теория размерности произвела глубокое впечатление на весь математический мир. Об этом ярко говорит следующий эпизод. Во время заграничной командировки Урысон сделал доклад о своих результатах в Геттинге. До прихода нацистов к власти Геттингский университет был одним из основных математических центров. После доклада руководитель геттингенской математической школы знаменитый Давид Гильберт сказал, что эти результаты надо опубликовать в журнале“Mathematische Annalen”- одном из главных математических журналов того времени. Через несколько месяцев Урысон снова делал доклад в Геттингене и Гильберт спросил у своего помощника по журналу, напечатана ли уже работа Урысона. Тот ответил, что работа рецензируется. “Но я же ясно сказал, что ее надо не рецензировать, а печатать! ” –воскликнул Гильберт. После столь недвусмысленного заявления статья была немедленно напечатана.

В течение трех лет продолжалась не имеющая равных по глубине и напряженности научная деятельность Урысона (за это время он опубликовал несколько десятков научных работ). Трагический случай оборвал его жизнь–он утонул 17 августа 1924г. , купаясь во время шторма в Бискайском заливе. За день до смерти он закончил очередную научную работу.

После смерти П. С. Урысона остались многочисленные черновики и наброски неопубликованных результатов. Его ближайший друг (и соавтор по многим работам) Павел Сергеевич Александров, отложив на некоторое время свои исследования, подготовил эти работы к печати, сделав тем самым и эти результаты Урысона достоянием всех математиков. В настоящее время теория размерности стала важной главой математики.

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.