RSS    

   Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами - (диплом)

p>Новизна и привлекательность рассматриваемого подхода обусловлены соединением в нем известного критерия максимума правдоподобия с алгоритмом квадратно-коневого информационного фильтра. Последний отличается высокой численной устойчивостью к погрешностям вычислений и к случаям плохой обусловленности схемы наблюдений. Однако факт совпадения оценок максимального правдоподобия с параметрами оптимального фильтра в общем случае не доказан. Этим объясняется актуальность экспериментальных исследований, устанавливающих условия, в которых данный критерий и соответствующий алгоритм идентификации могут считаться практически пригодными. М. Кудрявцев проанализировал заданный алгоритм, отличающийся сложным и разнообразным математическим аппаратом, сочетающим методы математической статистики, оптимального оценивания и матричных вычислений. Он обосновал вычислительные компактные схемы, включая вычисление обратного логарифма функции правдоподобия, его градиента по параметру неопределенности и информационной матрицы Фишера, и разработал необходимые программы.

Основательность и настойчивость позволили М. Кудрявцеву выполнить эту работу без лишней торопливости, с глубоким пониманием существа вопроса и доведением всего исследования до наглядных экспериментальных результатов. Работа демонстрирует высокую подготовку ее автора по специальности ”Прикладная математика”, его способности к проведению самостоятельных исследований и заслуживает отличной оценки.

    Д. т. н. , профессор И. В. Семушин
    Введение

Спектральный анализ - это один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области.

К обработке сигналов в реальном масштабе времени относятся задачи анализа аудио, речевых, мультимедийных сигналов, в которых помимо трудностей, связанных непосредственно с анализом спектрального содержания и дальнейшей классификацией последовательности отсчетов (как в задаче распознавания речи) или изменения формы спектра - фильтрации в частотной области (в основном относится к мультимедийным сигналам), возникает проблема управления потоком данных в современных вычислительных системах. Реальность накладывает отпечаток как на сами вычислительные алгоритмы, так и на результаты экспериментов, поднимая вопросы, с которыми не сталкиваешься при обработке всей доступной информации. При обработке сигналов обычно приходится решать задачи двух типов - задачу обнаружения и задачу оценивания. При обнаружении нужно дать ответ на вопрос, наблюдаем ли в данное время некоторый сигнал с априорно известными параметрами. Оценивание - это задача измерения значений параметров, описывающих сигнал [1]. Сигнал часто зашумлен, на него могут накладываться мешающие сигналы. Поэтому для упрощения указанных задач сигнал обычно разлагают по базисным составляющим пространства сигналов. Для многих приложений наибольший интерес представляют периодические сигналы. Вполне естественно, что используютсяSin и Cos. Такое разложение можно выполнить с помощью классического преобразования Фурье.

При обработке сигналов конечной длительности возникают интересные и взаимозависимые вопросы, которые необходимо учитывать в ходе гармонического анализа. Конечность интервала наблюдения влияет на обнаружимость тонов в присутствии сильных шумов, на разрешимость тонов меняющейся частоты и на точность оценок параметров всех вышеупомянутых сигналов.

    Постановка проблем, формулировка задач

На настоящее время существует большое количество алгоритмов и групп алгоритмов, которые так или иначе решают основную задачу спектрального анализа: оценивание спектральной плотности мощности, с тем чтобы по полученному результату судить о характере обрабатываемого сигнала . Основной вклад сделан такими исследователями как : Голд Б. (Gold B. ), Рабинер Л. (Rabiner L. R. ) , Бартлетт M. (Bartlett M. S. ) Однако каждый из алгоритмов имеет свою область приложения. Например, градиентные адаптивные авторегрессионные методы не могут быть применены к обработке данных с быстро меняющимся во времени спектром. Классические методы имеют широкую область применения, но проигрывают авторегрессионным и методах, основанных на собственных значениях, по качеству оценивания. Но в реальном масштабе времени использование последних затруднено из-за вычислительной сложности.

Более того, применение каждого из методов обычно требует выбора значений параметров (выбор окна данных и корреляционного окна в классических методах, порядка модели в авторегрессионном алгоритме и алгоритме линейного предсказания, предполагаемого числа собственных векторов в пространстве шума в метода Писаренко) и правильный выбор требует экспериментальных результатов с каждым классом алгоритмов.

    Таким образом, имеется следующая задача :

На основе существующих алгоритмов проанализировать возможность применения как к последовательной обработке сигналов в реальном времени, так и к блочной обработке и оценить качество получаемых результатов

Из вышесказанного можно сформулировать следующие подзадачи: I. теоретическое и практическое исследование алгоритмов блочной обработки II. анализ классических алгоритмов блочной обработки всей последовательности в части применения окон данных и корреляционных окон анализ алгоритмов обработки сигналов в реальном масштабе времени

Существует несколько проблем, специфичных для обработки сигналов в реальном времени:

· Необходимость в “одновременном” выполнении следующих основных этапов обработки данных: Непосредственное получение последовательности входных данных (цифровые отсчеты аудио-сигнала, речевого сигнала).

    Обработка получаемых отсчетов сигнала.
    Представление обработанной информации
    Возможность контролировать процесс обработки информации

·Ограничение длительности интервала выборки поступающих данных вычислительными ресурсами

· Ограничение длительности интервала выборки характером сигнала Если первая проблема очевидна в рамках обработки данных в реальном времени, то вторая и третья проблемы требуют осмысления причин этих ограничений.

    К сформулированным выше задачам добавляются :

задача построения схемы управления обработкой данныхв реальном времени, основанной, в силу первой проблемы, на параллельных вычислениях и протоколах взаимодействия и синхронизации;

экспериментальный анализ по второй проблеме, то есть исследование влияния вычислительных ресурсов и методов оцифровки данных на максимально допустимую длину интервала выборки;

    анализ длительности, исходя из характера сигнала.

Из постановки основной задачи вытекает необходимость в проведении большого количества экспериментов. Экспериментальные входные данные формируются следующим образом

· для задачи анализа алгоритмов блочной обработкивсей последовательности отсчетов формируются дискретизированные отсчеты данных тест-сигнала из суммы комплексных синусоид и аддитивных окрашенных шумовых процессов, сформированные посредством пропускания белого шума через фильтр с частотной характеристикой типа приподнятого косинуса или окна Хэмминга. Таким образом, в этом случае эксперимент определяется набором, где - последовательность комплексных синусоид с амплитудами дБ и частотами Гц, а - последовательность шумовых процессов с параметрами : центральная частота Гц. , динамический диапазон перекрываемых частот Гц. , мощность шума дБ. · для анализа классических алгоритмов блочной обработкивсей последовательности в части применения окон данных и корреляционных окон эксперимент и подсчет основных характеристик окон производится над дискретизированными отсчетами соответствующих функций.

· для анализа алгоритмов обработки сигналов в реальном масштабе времени данными являются аудио и речевой сигналы.

    Выходными данными экспериментов являются :

·для задачи анализа алгоритмов блочной обработки всей последовательности отсчетов :

1. )оценка спектральной плотности мощности , полученная с помощью того или иного метода спектрального анализа, по которой можно судить о качестве применяемого метода, сравнивая истинную спектральную плотность мощности сформированного сигнала с полученной оценкой

    2. ) вычислительные и временные затраты метода

·для анализа окон данных и корреляционных окон - расчетные основные характеристики такие как : максимальный уровень боковых лепестков, эквивалентная ширина полосы, ширина полосы по уровню половинной мощности, степень корреляции и т. д... ·для анализа сигналов в реальном масштабе времени : спектральная плотность мощности (функция, зависящая в этом эксперименте также и от времени). Для оценки составляющих в спектре сигнала в данный момент времени.

Из .... Теоретический анализ существующих алгоритмов спектрального анализа. Спектральная оценка, получаемая по конечной записи данных, характеризует некоторое предположение относительно той истинной спектральной функции, которая была бы получена, если бы в нашем распоряжении имелась запись данных бесконечной длины. Именно поэтому поведение и характеристики спектральных оценок должны описываться с помощью статистических терминов. Общепринятыми статистическими критериями качества оценки являются ее смещение и дисперсия.

Из формального определения спектра, следует, что спектр является некоторой функцией одних лишь статистик второго порядка, относительно которых в свою очередь предполагается, что они остаются неизменными, или стационарными во времени. Следовательно, такой спектр не передает полной статистической информации об анализируемом случайном процессе, а значит, дополнительная информация может содержаться в статистиках третьего и более высокого порядка. Кроме того, многие обычные сигналы, которые приходится анализировать на практике, не являются стационарными. Однако короткие сегменты данных, получаемые из более длинной записи данных, можно считать локально стационарными. Анализируя изменения спектральных оценок от одного такого сегмента к другому, можно затем составить представление и об изменяющихся во времени статистиках сигналов, то есть нестационарных.

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.