RSS    

   Роль подземных вод в формировании и разрушении залежей нефти и газа

ретий этап дифференциации твердой и жидкой фаз приходится на стадии позднего меэокатагенеза и апо-катагенеза, когда идет генерация сухого метанового газа, а из пород удаляются химические связанные воды; в составе газов с глубиной возрастает доля углекислоты. Наличие пресных литогенных вод, высоких температуры и давления способствует выносу УВ в виде истинных водных растворов Однако объем литогенных вод незначителен, и определенная часть газа эмигрирует в свободном состоянии.

Миграции УВ в водорастворенном состоянии. Возможность водной эмиграции углеводородных газов определяется их хорошей растворимостью. Экспериментально установлен широкий диапазон изменения растворимости природных газов в зависимости от минерализации, температуры и давления. Так, растворимость метана и дистиллированной поде изменяется от 0,05 м3/м3 при давлении 1 МПа и нулевой температуре до 50,3 м3/м3 при давлении 188,8 МПа и 280° С и до 135.2 м3/м3 при 354° С и том же давлении. Минерализация значительно снижает растворимость углеводородных газов: при 250°С, давлении 107,8 МПа и минерализации 280 г/л растворимость метана снижается до 6.5 м3/м3.

Фактическая газонасыщенность подземных вод нефтегазоносных бассейнов изменяется в широких пределах. Хорошо изучена газонасыщенность подземных вод до глубин 3 -- 4 км, где она обычно составляет 1--5 м3/м3 реже более. С глубиной возрастают температура и давление и, следовательно, увеличивается гаэоемкость подземных вод. Минерализация снижает растворимость газов, однако с глубин 3 -- 4 км и менее появляются маломинерализованные щелочные воды, что резко сказывается на газоемкости вод. Особенно высокой газонасыщенностью характеризуются подземные воды зон АВПД с низкой минерализацией. Видно, что с ростом давления раствори-мость углеводородных газов в подземных водах становится уникальной.

Данные о высокой газонасыщенности вод глубоких зон нефтегазоносных бассейнов получены и зарубежными исследователями. Так, газонасыщенность вод в скв. 1 площади Эдна-Делкабр, пробуренной па побережье Мексиканского залива (США), на глубине 3800 м составила 9,3 м3/м3. При исследовании глубинной пробы воды из нефтеносного горизонта на побережье Мексиканского залива установлена газонасыщенность под в 27 м3/м3. Наконец, из скважины, пробуренной на глубину 6000 м близ Батон-Ружа в Луизиане (США), получен приток воды с газонасыщенкостью 92,8 м3/м3.

Значительное повышение растворимости УВ в подземных водах с ростом давлении весьма важно для объяснения процессов эмиграции УВ, так как главным агентом первичной миграции являются норовые растворы материнских пород. Но поровые растворы испытывают не гидростатическое, а горное давление. Благодари высокому поровому давлению газоемкость подземных вод становится значительной уже на малых глубинах и существенно возрастает в зоне мезокатагенеза. Повышению внутрипорового давления способствуют процессы литогенеза, генерация жидких и газообразных УВ, более быстрый рост горного давления по сравнению с оттоком норовых вод Высокое поровое давление приводит, с одной стороны, к поглощению поровыми кодами огромных объемов УВ, и с другой - к микрораз-рывам горных пород, к образованию системы микро- и макротрещин, по которым флюид (нефть, газ, вода) струйно мигрирует в коллектор.

Наряду с высоким поровым давлением существенное влияние на вынос УВ из материнских толщ оказывают химически и физически связанные воды, переходящие в свободную фазу в процессе литогенеза. Связанная вода при выходе из поля воздействия поверхностных сил характеризуется повышенными агрессивностью и растворяющей способностью. Структура отжимаемой воды, отличаясь от той, которая была ей свойственна в связанном состоянии, в то же время отличается от структуры свободной воды. В таком состоянии отжимаемая вода находится при фильтрации по капиллярной (субкапиллярной) системе уплотняющихся глинистых пород. Для оценки роли снизанной воды в эмиграции УВ рассмотрена растворяющая способность воды в связи с изменением ее полярности. Как известно, в области низкой температуры (10 -- 400С) вода является популярным растворителем с очень высокой диэлектрической постоянной. В области высоких температур полярность воды невелика. Так, при температуре 280 --300° С диэлектрическая постоянная воды <20.

Снижение полярности воды с ростом температуры способствует растворимости неполярных органических соединений. Поверхностные силы минеральных частиц, как и температура, но еще более интенсивно снижают полярность связанной воды, тем самым существенно повышают растворимость УВ. Таким образом, поровые воды способны растворять огромные объемы жидких и газообразных УВ и тем самым обеспечивать их вынос из материнских пород. Так как процессы генерации и эмиграции УВ неразрывны, для жидких компонентов важно совпадение зоны интенсивного нефтеобразования с зоной выхода в свободную фазу больших объемов химически и физически связанных вод.

Растворимость УВ в воде с ростом минерализации снижается почти на порядок. Но связанные воды мало минерализованные, и минерализация их тем меньше, чем прочнее связь вода -- порода. Следовательно, в процессе литогенеза прогрессивно снижается минерализация поровых вод и возрастает их способность расширять УВ.

С ростом температуры повышается растворимость УВ. Но роль температуры проявляется не только в повышении растворимости УВ, но и в снижении адсорбционной емкости пород. Установлено, что при 374° С взаимная растворимость УВ и воды становится неограниченной: образуется однородный водогазонефтяной раствор -- флюиды находится в надкритическом или близком к нему состоянии. Существенное повышение растворимости УВ с ростом давления и при снижении полярности воды делает реальным допущение, что состояние взаимной растворимости в системе поровая вода УВ наступает при более низкой температуре и, следовательно, на относительно небольших глубинах. Все это позволяет очень высоко оценивать роль водной эмиграции жидких и газообразных УВ в широком интервале глубин.

Миграция нефти в жидкодисперсном состоянии. Проблема миграции нефти в жидкодисперсном состоянии давно привлекала внимание исследователей. Растворимость УВ возрастает с увеличением концентрации солей органических кислот.

Миграция нефти в виде газовых растворов. Способность сжатых газов растворять жидкие и твердые вещества установлена еще и прошлом столетии. Впервые идею о возможности миграции нефти и однофазном газовом состоянии в условиях высоких температуры и давления высказал Дж. Рич (1927 г.). Большое значение этих явлений для миграции нефти было показано В. А. Соколовым (1948 г.).

Растворимость нефти в различных газах существенно различается. Растворимость нефти в углекислом газе значительно выше, чем в метане. В реальных геологических условиях возможность эвакуации жидких УВ из нефтематеринских пород сжатыми газами исследователями оценивается неоднозначно. Некоторые геологи роль сжатых газов в эмиграции нефти считают незначительной. Основные возражения сводятся к тому, что для выноса нефти генерируемых количеств газа недостаточно и что природные газы преимущественно метановые, т.е. не переводят в газовую фазу высококипящие компоненты нефти при существующих пластовых температуре и давлении.

В связи с этим следует подчеркнуть масштабность газогенерации. Высокая обогащенность подземных вод нефтегазоносных бассейнов углеводородными газами позволяет оценивать роль газовых растворов в качестве главного механизма эмиграции нефти. При этом следует учесть, что в подземных водах растворено менее 10% газа, генерируемого осадочными толщами бассейна. Процессу нефтеобразования сопутствует генерация жирных газов. Содержание гомологов метана в битуминозных породах, достигает 73% при высокой концентрации углекислоты. Все это позволяет высоко оценивать роль газовых растворов в эмиграции нефти.

Для понимания особенностей дифференциации твердой и жидкой фаз также следует учитывать возможность растворения воды в газе. Данные показывают, что в недрах глубоких депрессий поровые воды эмигрируют из глин в газообразном состоянии. Более того, реально допустить, что и в коллекторе глубоких депрессий находится газовая фаза с растворенной водой.

При эмиграции углеводородных газов большое значение имеет диффузия, так как она протекает постоянно при наличии перепада давления или концентрации. А перепады давления (концентрации) газа между материнской толщей и смежным коллектором могут достигать больших величин. Между тем дальность диффузии в системе материнская порода коллектор невелика. Выполненные расчеты показали, что основная масса газообразных УВ (65--70%) их глинистых толщ эмигрирует путем диффузии. Механизм этот позволяет понять причину существенного отличия газов, сорбированных ОВ, от газов подземных вод.

При учете всех форм миграции УВ эвакуация нефти и газа из материнских толщ в коллектор представляется в следующем виде. В материнской толще происходит рост внутрипорового давления в связи с литогенезом -- генерацией нефти, газа, высвобождением химически и физически связанной воды, ростом горного давления. Рост внутрипорового давления приводит к гидроразрыву пород. Вначале возникают мелкие волосяные трещины, которые, сливаясь, образуют более крупные каналы. По этой системе пор, микро- и макротрещин происходит миграция сложных флюидальных систем: истинных, коллоидных, водных растворов. Следы этой миграции можно наблюдать в естественных обнажениях в виде многочисленных трещин горных пород, залеченных обломками терригенных пород, кальцитом и другими минералами.

Эмиграция флюидальной системы происходит ступенчато. Вначале система перемещается по порам, капиллярам и микротрещинам материнских пород. Основной флюидоноситель -- сжатый газ и вода со структурой, отличающейся от структуры как связанной, так и свободной, гравитационной воды. Это -- модифицированная вода с высокой растворяющей способностью, связанной с низкой полярностью и боль-шим внутрипоровым и внутрикапиллярным давлением. Вторая ступень -- миграция по открытым трещинам. При этом давление в системе скачкообразно падает от внутрипорового к давлению в трещине, что сопровождается нарушением физико-химического равновесия в системе. Третья ступень -- миграция по кол лекторским пластам. Давление в системе снижается от давления в трещине до гидростатического. Происходит дальнейшая дифференциация фаз на нефть, углеводородные газы и пластовую воду.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.