RSS    

   Разработка методики региональной экологической оценки состояния лесов по данным спутниковых наблюдений

p align="left">Результатом классификации спутниковых изображений Landsat-ETM+ стала карта лесов для части территории Московской области. Сравнительные данные о лесистости ряда лесохозяйственных предприятий области, полученные с использованием полученной карты и материалов Государственного учета лесов (ГУЛ) РФ по состоянию на 1998 год, представлены на рисунке 4.

Рис.4 Связь данных о лесистости для лесхозов Московской области по результатам классификации Landsat ETM+ и материалам ГУЛ (1998 г)

Глава 3. Региональная экологическая оценка характеристик состояния лесов по многоспектральным спутниковым данным MODIS

Для проведения экспериментальных работ был использован набор очищенных от влияния облачного покрова сезонных композитных изображений, полученных по данным прибора Modis со спутника Terra. Полученные данные обеспечивают полное покрытие территории области и включают композитные изображения для летнего (июнь-август) и зимнего (декабрь-февраль) периодов 2002 года. При этом использовались данные наблюдений с пространственным разрешением 250 м в красном (620-670 нм) и ближнем инфракрасном (841-876 нм) спектральных диапазонах и разрешением 500 м в среднем инфракрасном (1628-1652 нм) диапазоне.

На первом этапе была выполнена классификация изображений MODIS для построения карты лесов области с выделением темнохвойных, светлохвойных, лиственных и смешанных лесов. Классификация выполнялась в два последовательных этапа с применением алгоритма кластерного анализа ERDAS ISODATA на основе совместного использования изображений летнего и зимнего периода спутниковых наблюдений. На первом этапе был выполнен кластерный анализ зимнего изображения с последующей тематической интерпретацией спектральных кластеров, позволившей построить бинарную маску покрытия территории области лесами. Последующая более детальная классификация типов лесов проводилась по данным MODIS, полученным в летний период. При этом в рассмотрение принимались только пиксели, включенные в бинарную маску лесов на предыдущем этапе. Такая последовательность использования разносезонных спутниковых изображений позволяет достаточно просто исключить ошибки, связанные с перепутыванием классов, относящихся к покрытым и непокрытым лесом территориям.

Оценка по данным MODIS значений спектральных индексов, отражающих относительное содержание хлорофилла и влагообеспеченность лесной растительности, проводилась согласно следующим выражениям:

NDVI = (NIR - RED) / (NIR + RED) (3)

NDWI = (NIR - SWIR) /(NIR + SWIR) (4)

где NDVI - нормализованный разностный индекс растительности; NDWI - нормализованный разностный индекс влагосодержания; RED, NIR и SWIR - соответственно значения спектральной яркости в каналах 620-670 нм, 841-876 нм и 1628-1652 нм.

Глава 4. ГИС-анализ экологического состояния лесов Московской области

Возможность комплексной экологической оценки состояния лесов Московской области на основе результатов обработки данных спутниковых наблюдений и информации из других источников может быть обеспечена интеграцией имеющихся данных в среду ГИС, обладающей эффективными средствами анализа и представления разнородной пространственной информации. Решение этой задачи потребовало формирования банка данных, являющегося информационным ядром региональной ГИС и включающим в себя ряд взаимосвязанных цифровых картографических слоев и атрибутивных таблиц, характеризующих различные аспекты состояния лесов региона и организации территории.

Согласно принятой методологии ГИС-анализа предусматривается интеграция результатов обработки спутниковых изображений на уровне ячеек, покрывающей территорию области, регулярной сети. Размер ячеек (10х10 км) сети выбран исходя из условий обеспечения статистической репрезентативности интегральных оценок, получаемых по спутниковым данным MODIS, а также уровня пространственной детальности необходимых для проведения анализа вспомогательных данных об антропогенной нагрузке на территорию области. Регулярная сеть на территорию области, сформированная в проекции UTM на эллипсоиде WGS84, включает в себя 553 ячейки.

Основу банка данных региональной ГИС составляет база данных об индикаторах экологического состояния лесов по данным спутниковых наблюдений. В атрибутивной таблице базы данных для каждой ячейки сети содержатся значения таких показателей как: лесистость, доля хвойных насаждений в покрытой лесом площади, а также значения NDVI и NDWI отдельно для хвойных и лиственных лесов.

Наряду с базой данных об индикаторах экологического состояния лесов, информационное обеспечение ГИС включает базу данных по антропогенной нагрузке, базу данных ГУЛ для лесохозяйственных предприятий, а также вспомогательные векторные слои границ ячеек регулярной сети, границ административных районов и лесохозяйственных предприятий, покрытия с информацией о дорожной сети и населенных пунктах. Все перечисленные базы данных были сформированы в среде ArcView GIS 3.2. в виде согласованных картографических слоев и атрибутивных таблиц.

Относительная близость времени получения обоих видов спутниковых данных (Landsat-ETM+ и Terra-MODIS) обеспечивает возможность их совместного использования без учета изменений в лесах в период между наблюдениями. Регрессионный анализ данных о лесистости, полученных по обоим видам спутниковых данных, проводился для совокупности ячеек регулярной сети в зоне покрытия территории области изображениями Landsat-ETM+ (рис.5).

Рис.5 Связь между значениями лесистости в ячейках регулярной сети (10х10 км) для территории Московской области по данным MODIS и Landsat ETM+

При этом полином второго порядка принят в качестве модели аппроксимация связи между значениями лесистости по данным Landsat ETM+ и MODIS, при значении коэффициента корреляции R2=0,94. Полиномиальный характер связи объясняется различием величины пространственного разрешения спутниковых данных и свидетельствует о том, что использование данных MODIS приводит к недооценке лесистости для малолесных территорий за счет пропуска мелких массивов лесов. Одновременно при значительном уровне лесистости использование данных MODIS приводит к завышению значений этого показателя за счет большого числа смешанных пикселей, классифицируемых как лесной покров.

Использование представленного на рисунке 5 уравнения позволило уточнить полученные по данным MODIS оценки лесистости для всей территории области. При этом, после проведения процедуры коррекции значение лесистости для области (41,8%) практически не отличается от данных официальной статистики (41%), что может служить свидетельством эффективности предложенного методического подхода.

Последующий анализ показал наличие статистически значимой положительной корреляции между значениями NDWI и NDVI для хвойной растительности (Рис.6) и отсутствие таковой для лиственных лесов. Этот факт видимо является следствием более высокой чувствительности хвойных лесов к уровню антропогенной нагрузки, а также взаимосвязи между усыханием и снижением концентрации хлорофилла в лесной растительности. Одним из объяснений этому может являться то, что лиственные леса менее подвержены антропогенному влиянию в силу характерной для них сезонной дефолиации и, следовательно, частичному выводу вредных веществ из органов древесных растений.

При анализе рисунка 6, отображающем связь спектральных индексов для хвойных лесов видно, логично предположить, что соответствующая области низких значений обоих спектральных индексов растительность находится в более угнетённом состоянии по сравнению с другими хвойными насаждениями области.

Рис.6 Связь между значениями спектральных индексов NDWI и NDVI для хвойных лесов Московской области по данным MODIS

Подтверждением этому предположению могут служить результаты анализа взаимосвязи значений спектральных индексов для хвойных лесов с независимо полученными данными об уровне антропогенной нагрузки на территорию области, сравнение которых в ячейках регулярной сети показало пространственную корреляцию.

Дальнейший анализ также продемонстрировал очевидную тенденцию к снижению средних значений обоих спектральных индексов для хвойных лесов по мере роста уровня антропогенной нагрузки на территорию (рис.7).

а)

б)

Рис.7 Средние значения и диапазоны изменений индексов NDVI (а) и NDWI (б) в зависимости от уровня антропогенной нагрузки на территорию

При этом можно наблюдать, что для индекса NDWI характерно более устойчивое снижение значений после достижения некоторых критических значений уровня антропогенной нагрузки, что может служить его характеристикой, как более чувствительного, по сравнению с NDVI, индикатора экологического состояния лесов. Из сравнения динамики обоих спектральных индексов можно также предположить, что реакция лесов на возрастание антропогенной нагрузки, проявляющаяся в снижении концентрации хлорофилла происходит с некоторой задержкой после начала процессов обезвоживания древесной растительности.

Объяснением вариабельности значений спектральных индексов в пределах однородных по условиям антропогенной нагрузки территорий могут служить различия в устойчивости древесных пород, возрастных категорий и, наконец, индивидуальных особенностей отдельных деревьев. В анализе также нуждаются ландшафтные особенности территории, а также дополнительные неучтенные факторы негативного воздействия на окружающую среду.

Анализ сформированной базы данных ГИС об индикаторах экологического состояния лесов области позволяет выявить территории с наиболее высоким уровнем угнетения лесной растительности. В частности, для хвойных насаждений Ленинского, Люберецкого, Каширского, Химкинского, Красногорского и Домодедовского районов, расположенных в непосредственной близости к городу Москва, характерны относительно низкие значения спектральных индексов NDVI и NDWI, что может свидетельствовать о высоком уровне угнетения лесов вследствие антропогенной нагрузки на окружающую среду.

Заключение

Диссертационная работа содержит результаты исследований и научных разработок автора, которые можно рассматривать как решение важной нау
чной задачи по развитию методов мониторинга экологического состояния лесов по данным спутниковых наблюдений. По результатам диссертационной работы можно сделать следующие основные выводы:

Современное состояние развития методов дистанционного зондирования обеспечивает возможность оценки характеристик состояния лесного покрова и создания системы регионального мониторинга лесов на основе комбинированного использования данных различного пространственного разрешения;

Методика региональной оценки экологического состояния лесов, предполагает использование спутниковых данных среднего и высокого пространственного разрешения (в частности, Terra/Aqua-MODIS и Landsat-ETM+) и направлена на определение индикаторов, отражающих покрытие территории лесами, породный состав насаждений и их физиологическое состояние, характеризуемое относительным уровнем концентрации хлорофилла и влагообеспеченности;

Разработанный метод взаимной радиометрической нормализации различающихся по условиям съемки изображений Landsat-ETM+ повышает эффективность использования данных спутниковых наблюдений для региональной оценки состояния лесов;

Эксперименты по классификации лесов по многоспектральным спутниковым изображениям показали возможность выделения темнохвойных, светлохвойных, лиственных и смешанных лесов с достаточным уровнем достоверности;

Комплексное использование результатов классификации лесов по данным MODIS и Landsat-ETM+ обеспечивает эффективную возможность оценки лесистости, как одного из важнейших индикаторов экологического состояния лесов региона;

Анализ взаимосвязей между значениями вегетационных индексов NDVI и NDWI по данным MODIS и уровнем антропогенной нагрузки показал возможность их использования в качестве индикаторов состояния хвойных лесов;

Анализ сформированной по результатам обработки спутниковых изображений базы данных ГИС об индикаторах экологического состояния лесов Московской области позволяет выявить территории с высоким уровнем угнетения лесной растительности.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Барталев С.С., Оценка индикаторов состояния лесов Московской области по данным спутниковых наблюдений. // Электронный многопредметный научный журнал "Исследовано в России" том 9 стр.948-958

Барталев С.С., Исследование возможностей классификации лесов Московской области по данным Landsat-ETM+. // Сборник трудов Х межвузовского научно-практического семинара студентов, аспирантов и молодых ученых Московского региона по актуальным проблемам экологии и природопользования стр.114-120

Мельник Н.Н., Барталев С.С., Применение информационных систем в целях оптимизации деятельности агропромышленного и рыбохозяйственного комплексов // Вестник, электротехнологии, электрификации и автоматизации сельского хозяйства. Научный журнал под редакцией Т.Б. Лещинской. Выпуск №3 (13). Раздел информационные технологии. стр.151-154

Барталёв С.С., Малинников В.А., Взаимная яркостная нормализация спутниковых изображений при региональном картографировании лесов. // Известия высших учебных заведений специальный выпуск 2006 г. стр.83-92

Барталёв С.С., Малинников В.А., Возможности региональной экологической оценки лесов по данным спутниковых наблюдений. // Известия высших учебных заведений. Геодезия и аэрофотосъёмка. №6 2006 г. стр.3-18

Барталёв С. C., Малинников В.А., Эксперименты по региональной оценке характеристик экологического состояния лесов с использованием данных спутниковых наблюдений и ГИС-технологий. Четвёртая всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса" Москва, ИКИ РАН, 13-17 ноября 2006 г. Сборник тезисов конференции стр. 202

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.