RSS    

   Новые результаты моделирования гидравлических характеристик дилювиальных потоков из позднечетвертичного Чуйско-Курайского ледниково-подпрудного озера

p align="left">При заполнении водой котловин до горизонтали 2100 м и выше ледниково-подпрудные озера в Курайской и Чуйской котловинах соединялись и образовывали единое озеро. Как отмечал еще 20 лет назад Г.Г. Русанов (личное сообщение), ледниковая плотина занимала все понижение между Курайским и Чуйским хребтами, заполняя древнюю и современную долины Чуи ниже урочища Боротал, при этом полностью перекрывая расположенное между ними плато Белькенек с абсолютной высотой 2264 м. В ходе геологической съемки на этом плато были повсеместно установлены свежие следы древнего оледенения в виде ледниковых шрамов и штрихов, и также разнообразной эрратики, распространенной до высоты 2250 м. Петрографический состав этой эрратики, по данным Г.Г. Русанова, указывает на то, что в образовании ледниковой подпруды участвовали ледники, спускавшиеся с Курайского и Северо-Чуйского хребтов.

Таким образом, абсолютные отметки ледниковой плотины, блокировавшей сток по долине Чуи в районе плато Белькенек в конце максимума последнего оледенения превышали 2300 м, возможно, как допускают А.Н. Рудой и В.В. Бутвиловский - и 2400 м. В последнем случае при максимальном заполнении впадин сток из них мог осуществляться через водораздельные спиллвеи, установленные этими исследователями. Отсутствие же на этих высотах на бортах впадин абразионных и аккумулятивных террас объясняется тем, в максимумы трансгрессий озерные воды контактировали не с коренными бортами впадин, а с глетчерным льдом, спускавшимся в котловины со всех сторон и переходившие на плав. В этих случаях максимальные объемы озерных вод могли достигать 3500 км3. Достоверные, не вызывающие сомнений и выраженные в рельефе и отложениях уровни заполнения Чуйской котловины водами ледниково-подпрудного озер, приурочены к горизонтали 2250 м. Даже при этих высотах зеркала площадь Чуйско-Курайского водоема достигала нескольких тысяч квадратных километров.

Заключение. В результате моделирования рассчитаны в динамике такие характеристики прорывных паводков, как расходы, скорости движения воды, кривые свободной поверхности, что позволило уточнить ранее полученные другими методами значения и расширить представления о формировании и движении прорывных паводков в долине горной реки.

Применяя предложенную нами модель, можно рассчитать гидравлические параметры не только для различных уровней зеркала озерных вод, но и максимальные расходы, скорости и глубины дилювиальных потоков, которые, имея ввиду приведенные только что абсолютные отметки следов ледниково-подпрудных озер, значительно превосходили приведенные нами цифры порядка 1 млн. м3/с. Данная работа, таким образом, имеет в том числе и методический характер, что подразумевает продолжение исследований для различных высотных меток стояния озерных вод и высот поверхностей прорывных паводков не только в относительно хорошо изученных котловинах и долинах стока, но и на других подобных территориях.

Итак, все котловины Южной Сибири могли катастрофически, одновременно и неоднократно поставлять на север десятки тысяч кубических километров паводковых вод. Возможны два палеогидрологических сценария:

1) регулярное поступление огромных масс воды в поздне - послеледниковое время в акваторию Полярного бассейна в случае отсутствия ледниковой преграды на севере Азии, которая блокировала бы сток Оби и Енисея;

2) регулярный и катастрофический сброс колоссального количества вещества и энергии на юго-запад, через Мансийское ледниково-подпрудное озеро в Западной Сибири, Тургайский, Узбойский и Манычский спиллвеи в бассейн Средиземного моря.

Оба сценария подразумевают сильные изменения температуры, солености и циркуляции в соответствующих секторах Атлантики или Северного океана.

Резюмируя в целом, отметим, что в реконструированной, крайне агрессивной природной среде в позднем плейстоцене и раннем голоцене южного обрамления Западной Сибири огромной важности проблему, на наш взгляд, представляет восстановление реакции биоты на палеогеографические изменения, причем как отдельных видов, так и сообществ.

Литература

1. Бутвиловский В.В. Палеогеография последнего оледенения и голоцена Алтая: событийно-катастрофическая модель. - Томск: Томск. ун-т, 1993. 252 с.

2. Галахов В.П. Имитационное моделирование как метод гляциологических реконструкций горного оледенения. - Новосибирск: Наука, 2001. 136 с.

3. Зольников И.Д., Мистрюков А.А. Четвертичные отложения и рельеф долин Чуи и Катуни. - Новосибирск: СО РАН, 2008. 182 с.

4. Новиков И.С. Морфотектоника Алтая. - Новосибирск: Наука, 2004. 313 с.

5. Новиков И.С., Парначев С.В. Морфотектоника позднечетвертичных озер в речных долинах и межгорных впадинах Юго-Восточного Алтая. - Геология и геофизика, 2000, т. 41, №2, с. 227-238.

6. Окишев П.А. Динамика оледенения Алтая в позднем плейстоцене и голоцене. - Томск: Томск. ун-т, 1982, 209 с.

7. Окишев П.А., Бородавко П.С. Реконструкция «флювиальных катастроф» в горах Южной Сибири и их параметры. - Вестн. Томск. госуниверситета, 2001. Т. 274. С. 3-12.

8. Рудой А.Н. Развитие речных долин бассейна Чуйской котловины в связи с особенностями четвертичного оледенения / Регион. конф. «Эволюция речных долин Алтайского края и вопросы практики». - Барнаул, 1982. С. 64-67.

9. Рудой А.Н. Основы теории дилювиального морфолитогенеза. - Известия Русского географического общества, 1997. Вып. 1. С. 12-22.

10. Рудой А.Н. Гигантская рябь течения (история исследований, диагностика, палеогеографическое значение). - Томск: ТГПУ, 2005. 224 с.

11. Рудой А.Н. Гигантская рябь течения (история исследований, диагностика и палеогеографическое значение) // Материалы гляциологических исследований, 2006. Вып. 101. С. 24-48.

12. Рудой А.Н., Браун Э.Г., Галахов В.П., Черных Д.В. Новые абсолютные датировки четвертичных гляциальных паводков Алтая. - Изв. Бийского отделения РГО. 2006. Вып. 26. С. 148-151

13. Русанов Г.Г. Максимальный уровень Чуйского ледниково-подпрудного озера в Горном Алтае - Геоморфология, 2008. №1. С. 65-71.

14. Baker V.R. Paleohydrology and sedimentology of Lake Missoula Flooding in Eastern Washington. - Gel. Soc. Am. Spec. Pap., 1972. Vol. 6. 79 p.

15. Baker V.R., Benito G., Rudoy A.N. Paleohydrology of late Pleistocene Superflooding, Altay Mountains, Siberia. - Science, 1993. Vol. 259. Р. 348-352.

16. Barkau R.L. UNET, One-Dimensional Unsteady Flow Through a Full Network of Open Channels. Computer Program. - St. Louis, Mo. 1992.

17. Brunner G.W. HEC-RAS River Analysis System - User's manual, version 3.0 / Hydraulic referece manual. Davis (U.S. Army Corps of Engineers), 2001. 262 P.

18. Carling P.A. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. - Sedimentology. 1996. Vol. 43. P. 647-664.

19. Clague J.J., Mathews W.H. The Magnitude of Jokulhlaups. - J. Glacilogy, 1873. Vol. 13. P. 501-504.

20. Costa J.E. Floods from dam failures. // Flood geomorphology. - N.Y.: John Wiley & Sons, 1988. P. 439-463.

21. Feldman A.D. HEC Models for Water Resources System Simulation: Theory and Experience. / Advances in Hydrosciences. - N.Y., 1981. P. 297-423.

22. Herget J. Reconstruction of Pleistocene Ice-Dammed Lake Outburst Floods in the Altai Mountains, Siberia. - Geol. Soc. America. 2005. Spec. Pap. 386. 118 p.

23. Herget J. & Agatz H. Modelling ice-dammed lake outburst floods in the Altai Mountains (Siberia) with HEC-RAS. - V.R. Thorndyraft, G. Benito, M. Barriendos and M.C. Llasat. Palaeofloods, Historical Floods and Climate Variability: Application in Flood Risk Assesment, 2003. (Proc. Of the PHEFRA Workshop. Barselona, 16-19th Okt., 2002).

24. O'Connor J.E., Baker V.R. Magnitudes and implications of peak discharges from glacial Lake Missoula. - Geol. Soc. Am. Bull., 1992. Vol. 104. P. 267-279.

25. Pardee J.T. Unusual currents in glacial Lake Missoula, Montana // Geol. Soc. Am. Bull., 1942. V. 53. P. 1569-1600.

26. Reuther A.U., Herget J. Ivy-Ochs S. et. al. Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenoc in situ 10Be. - Geology. 2006. Vol. 43. №11. P. 913-916.

27. Rudoy A.N. Mountain Ice-Dammed Lakes of Southern Siberia and their Influence on the Development and Regime of the Runoff Systems of North Asia in the Late Pleistocene. Chapter 16. (P. 215-234.) Palaeohydrology and Environmental Change / Eds: G. Benito, V.R. Baker, K.J. Gregory - Chichester: John Wiley & Sons Ltd. 1998. 353 p.

28. Rudoy A.N. Glacier-Dammed Lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains // Quaternary International. 2002. Vol. 87/1. P. 119-140.

29. Rudoy A.N., Baker V.R. Sedimentary Effects of cataclysmic late Pleistocene glacial Flooding, Altai Mountains, Siberia // Sedimentary Geology, 1993. Vol. 85. №1-4. Р. 53-62.

30. US Army Corps of Engineers. Hydrologic Engineering Center. HEC-RAS, River Analysis System User's Manual. Version 4.0. Davis, CA, 2008. 747 p.

31. US Army Corps of Engineers. Hydrologic Engineering Center. HEC-GeoRAS. An extension for support of HEC-RAS using ArcView. User's Manual. Version 3.1. Davis, CA, 2002. 154 p.

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.