Картографические проекции
Картографические проекции
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Геолого-географический факультет
КОНТРОЛЬНАЯ РАБОТА
По курсу «Геоинформационные системы в геологии».
Картографические проекции.
Выполнила студентка
3 курса ГГФ
Королева Ю.И.
Томск 2008
Содержание
Введение
Понятие о картографических проекциях
Классификация проекций по виду меридианов и параллелей нормальной сетки
Существующие проблемы
Основные способы анализа при картографическом методе исследования
Совместное использование и переработка карт при картографическом методе исследования
Список литературы
Введение
Подобно многим отраслям знания научные истоки современной картографии и географии берут начало в античной Греции. Греки установили шарообразность Земли и вычислили ее размеры. Им принадлежат первые картографические проекции и введение в научный обиход меридианов и параллелей. Они являются создателями географических карт в. строго научном понимании этого термина.
Развитию в Греции географических знаний способствовало колонизационное движение. Оно привело к образованию греческих колоний на обширном пространстве от восточного побережья Пиренейского полуострова до северных берегов Черного моря. Эти колонии распространились почти на весь известный грекам мир. Дальнейшему накоплению географических знаний содействовали походы Александра Македонского. (334 - 323 гг. до н.э), сопровождавшиеся крупными географическими открытиями.
Понятие о картографических проекциях. Классификация проекций по характеру искажений
При переходе от физической поверхности Земли к ее отображению на плоскости (на карте) выполняют две операции: проектирование земной поверхности с ее сложным рельефом на поверхность земного эллипсоида, размеры которого установлены посредством геодезических и астрономических измерений, и изображение поверхности эллипсоида на плоскости посредством одной из картографических проекций.
Картографическая проекция - математически определенный способ отображения поверхности эллипсоида на плоскости устанавливает аналитическую зависимость (соответствие) между географическими координатами, точек земного эллипсоида и прямоугольными координатами тех же точек на плоскости. Эта зависимость может быть выражена двумя уравнениями вида:
х=f1(В,L), у=f2(В, L) (1),
называемыми уравнениями картографических проекций. Они позволяют вычислять прямоугольные координаты х, у изображаемой точки по географическим координатам В и L. .Число возможных функциональных зависимостей и, следовательно, проекций неограниченно. Необходимо лишь, чтобы каждая точка B, L эллипсоида изображалась на плоскости однозначно соответствующей точкой х, у и чтобы изображение было непрерывным.
Поверхность эллипсоида (или шара) нельзя развернуть на плоскости подобно поверхности конуса или цилиндра. Поэтому непрерывность и однозначность изображения достигаются как бы за счет неравномерного растяжения (или сжатия), т. е. деформации поверхности эллипсоида при совмещении ее с плоскостью. Отсюда следует, что масштаб плоского изображения не может быть постоянным. Для наглядного представления о величине и характере деформаций, свойственных определенной проекции, рассматривают, как изображаются на плоскости бесконечно малые окружности, взятые в разных точках на поверхности эллипсоида. В теории картографических проекций доказывается, что бесконечно малая окружность на поверхности эллипсоида в общем случае изображается на плоскости эллипсом, называемым эллипсом искажений. Это означает, что масштаб изображения зависит не только от положения точки, но может изменяться в данной точке с переменой направления. Различают главный масштаб, равный, масштабу модели земного эллипсоида, уменьшенного в заданном отношении для изображения на плоскости, и прочие масштабы, называемые частными. Частный масштаб определяется как отношение бесконечно малого отрезка d на карте (на плоскости) к соответствующему ему отрезку на поверхности эллипсоида. Обозначим величину этого отрезка в главном масштабе через dS. Отношение этих величин, обозначаемое через µ соответствующее отношению частного масштаба к главному, характеризует искажение длин
µ= (2)
В любой точке на поверхности эллипсоида имеются два взаимно перпендикулярных направления (называемых главными), которые в проекции также изображаются взаимно перпендикулярными линиями, совпадающими с большой и малой осями эллипса искажения (рис. 1). Очевидно, в эллипсе искажений наибольший масштаб совпадает с направлением большой оси эллипса, а наименьший - с направлением малой оси. Эти масштабы по главным направлениям, выраженные в отношении к главному масштабу, обозначают соответственно через а и б. Вообще говоря, главные направления могут элементы не совпадать с меридианами и параллелями (и их изображением в проекции). В таком случае масштабы по меридиану и параллели обозначают соответственно через m и n.
Рис. 1. Эллипс искажений и его элементы.
Непостоянство масштабов в данной точке по разным направлениям можно видеть на рис. 2.6, где длины изображаемых меридианов равны длинам меридианов эллипсоида (разумеется, с уменьшением до масштаба карты), а длины параллелей увеличиваются по мере удаления от экватора. На рисунке отрезки параллелей между двумя меридианами одинаковы на любой широте, тогда как в действительности они уменьшаются с приближением к полюсу до нуля. Таким образом, масштаб вдоль меридианов постоянен в любой точке карты, но вдоль параллелей он возрастает с увеличением широты. Это видно по эллипсам искажений, показанным на рис. 2. 6.
Наряду с искажениями длин различают искажения площадей и углов. За искажение площади в некоторой точке карты принимают отношение площади эллипса искажений dP/ к площади dP соответствующего бесконечно малого крута на эллипсоиде, обозначаемое через р:
(3)
Рис. 2. Картографические сетки в цилиндрических проекциях: а - равновеликой; б - равнопромежуточной; в - равноугольной.
Искажением угла называют разность между углом, образованным двумя линиями на эллипсоиде, и изображением этого угла на карте. Величина искажения углов в данной точке характеризуется наибольшим значением этой разности.
Проекций, совершенно лишенных искажений длин, не существует. Такие проекции сохраняли бы подобие и пропорциональность всех частей земной по-верхности, что может иметь место только на модели эллипсоида. Вместе с тем есть проекции, свободные от искажения углов или от искажений площадей.
Проекции, которые передают величину углов без искажения, называются равноугольными. Одна из них изображена на рис. 2.в.
В каждой точке равноугольной проекции масштаб одинаков на всех направлениях (эллипс искажении превращается в окружность) но меняется от точки к точке. Это видно по изменению размеров окружностей - эллипсов искажений.
Равновеликие проекции сохраняют площади (эллипсы искажений везде имеют одинаковую площадь) но сильно нарушают подобие фигур (вытянутость эллипсов искажений различна) (см. рис. 2.а).
Существует множество проекций, которые не являются ни равноугольными, ни равновеликими, - их называют произвольными.
Но нет и не может, быть проекции, которая была бы одновременно равноугольной и равновеликой. Вообще говоря, чем больше искажения углов, тем меньше искажения площадей и, наоборот, среди произвольных проекций выделяют равнопромежуточные, во всех точках которых масштаб по одному из главных направлении постоянен и равен главному масштабу (например, по меридианам или параллелям в проекциях, где они совпадают с главными направлениями) По своим свойствам произвольные проекции лежат между равноугольными и равновеликими. Характер искажений, присущий проекции (равноугольная, равновеликая, равнопромежуточная), отмечается в ее названии.
Классификация проекций по виду меридианов и параллелей нормальной сетки
В картографической практике распространена классификация проекции по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра, касательного к эллипсоиду, или секущего эллипсоид; конические, когда вспомогательной плоскостью является боковая поверхность касательного или секущего конуса; азимутальные, когда вспомогательная поверхность - касательная или секущая плоскость.
Геометрическое построение названных проекций отличается большой на-глядностью. Для простоты рассуждения вместо эллипсоида воспользуемся шаром.
Заключим шар в цилиндр, касательный по экватору (рис. 3.а). Продолжим плоскости меридианов ПА, ПБ, ПВ, ...и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями aAa1, 6Бб1, вВв1, ..., перпендикулярными экватору АБВ... Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам. Полученная цилиндрическая проекция (рис. 3. 6) оказывается равновеликой, так как боковая поверхность S шарового пояса АЕДГ, равная 2лRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по вере удаления от экватора.