сновною особливістю індексного методу є те, що його складові компоненти (абсолютні, середні і відносні величини) належать до певної зв'язуючої їх системи. Будь-які з перерахованих величин, що знаходяться поза системою, не мають відношення до індексного методу. Здатність індексного методу об'єднати в певну, цілеспрямовану систему ізольовані статистичні величини, являє собою той якісно новий рівень обробки статистичних даних, який відрізняє його від методів відносних і середніх величин. Отже, індексний метод і його основний інструмент - індекс - на відміну від названих методів повинен ототожнюватись передусім з поняттями "система" і "взаємозв'язок". Системний підхід до дослідження динаміки явищ реалізується в індексному методі таким чином. При індексуванні непорівнянних явищ елемент взаємозв'язку вводиться шляхом їх агрегування з певним сумірником. Рішення такого роду задач являє собою найбільш звичну для економістів сферу діяльності індексного методу. Однак, "складність" явищ не обмежується несумірністю їх елементів. Вона відображається і в тому, що між явищами і їх елементами існує внутрішній, причинно-наслідковий взаємозв'язок, який індексний метод використовує для виконання аналітичних функцій. Характерною рисою індексного методу при виконанні аналітичної функції стає причинно-наслідковий підхід до вивчення явищ і їх елементів. Отже, виконуючи і синтетичну, і аналітичну функції, індексний метод не може проявлятися інакше, як через використання певного взаємозв'язку між явищами. Це відрізняє його від інших статистичних методів, зокрема, від кореляційно-регресійного. Хоч останній також досліджує взаємозв'язки між явищами, але об'єктом його дослідження є стохастичний взаємозв'язок між явищами, а об'єктом індексного методу функціональний. Потрібно також підкреслити, що індекси не обов'язково повинні зв'язуватися тільки з динамікою процесів, що досліджуються. Нерідко вони використовуються і для порівняльної характеристики складних явищ в статиці. Наприклад, відомий метод порівняння ефективності структури посівних площ окремих культур по двох і більше регіонах за допомогою певних індексних систем. Індекси використовуються також для оцінки відхилення рівнів взаємопов'язаних явищ від деякого еталона планового завдання, оптимального варіанту тощо. Таким чином, відмінною рисою індексного методу є те, що він досліджує не поодинокі економічні категорії, а їх систему, утворену за принципом функціональної залежності між явищами. Причому дослідження даної залежності може здійснюватися в різних напрямах. Отже, індексний метод - це комплексна характеристика відносної зміни явищ у часі, просторі або в порівнянні з яким-небудь еталоном таких явищ, які внаслідок наявності функціональної залежності між ними представлені системою взаємопов'язаних показників за принципом представлення інтегрального результату через його складові. Головне в індексному методі перехід від аналізу кількісних відмінностей між елементами порівнюваних систем до аналізу кількісних відмінностей між системами загалом. Іншими словами, аналіз на рівні частковості здійснюється з метою його синтезу на рівні загального. У цьому проявляється єдність аналітичної і синтетичної функцій індексного методу. Математичні аспекти відображення взаємозв'язків є формальною стороною справи, похідною від якісної суті взаємозв'язків. Головним виступає розв'язання проблеми про те, чи дійсно даний взаємозв'язок функціональний за формою, а в практичному відношенні, - чи вірна вона за змістом і чи істотна за економічною значимістю. Така постановка питання передбачає розгляд індексного методу на стику декількох наук: статистики, математики, економіки і філософії. З математичної сторони індексування є формальним прийомом виразу однієї величини за допомогою двох або більше інших величин, виходячи з наявності функціональної залежності між ними. На частку статистики доводиться обґрунтування методологічних питань побудови агрегатних індексів, принципів зважування показників, що індексуються, форм наукової абстракції тощо. При цьому має місце прив'язка статистичних аспектів індексування до економічної природи явищ, конкретна економічна оцінка отриманих індексів і т.д., що загалом зумовлює тісний зв'язок індексного методу з економічними науками. Для поглибленого пізнання суті величин, що індексуються, і підвищення практичної цінності індексного методу загалом, необхідна тісна ув'язка його положень з діалектичним підходом до явищ, що досліджуються. Мета індексування - не просто оперування індексами, а проникнення в діалектичну природу взаємозв'язку між даними явищами, забезпечення об'єктивної кількісної характеристики цього взаємозв'язку і цілеспрямоване її використання в практичній діяльності. Якщо говорити про фактичну участь перерахованих наук в індексному методі, що сформувався, то потрібно відзначити певну несумірність між ними. Зокрема, спостерігається явна перевага математичних аспектів в збиток економічній, особливо діалектичній, стороні питання. Правда, це не дуже помітне в межах того вельми вузького кола індексних моделей, якими зазвичай оперує теорія статистики. Але варто ознайомитися зі сферою застосування індексного методу ширше, особливо при переході до багатофакторного аналізу, як відразу дає про себе знати обмеженість його теоретичної бази. Це пояснюється тим, що наявна теорія індексів, в арсеналі якої практично відсутні елементи діалектики, не в змозі виробити досить обґрунтовану методологію багатофакторного індексного аналізу. Не випадково останній представлений в учбовій літературі вельми слабо, а в деяких виданнях про нього взагалі не згадується. Одним словом, існують вагомі аргументи щодо розширення теоретичних основ індексного методу. Більш широке його розуміння дозволяє глибше осмислити місце і роль індексного методу в системі статистичних методів і перетворити його в фундаментальну наукову концепцію дослідження функціональної залежності між явищами.
1.2 Зв'язок індексного методу з іншими методами статистикиПринципова відмінність індексного методу від найбільш близьких до нього методів відносних і середніх величин полягає в системному підході до дослідження явищ на основі об'єктивно існуючого між ними взаємозв'язку. Разом з тим, у даних методів є формальна схожість, що зумовлює дискусії про те, до яких методів відносити ті або інші схожі прийоми обробки статистичних даних. Зокрема, існує багато точок зору на так звану проблему індивідуальних індексів, тобто індексів, що відносяться до окремих елементів сукупності. Досі немає чіткого визначення індивідуальних індексів, хоч в індексному методі вони використовуються досить широко. Наведемо деякі приклади. Л.С.Казінець визначає індивідуальні індекси як відносні показники, обчислені "за ознакою однорідності натуральної форми одиниць сукупності, що вивчається; складні явища, на його думку, можуть бути розкладені на такі прості елементи, які певною мірою є однорідними. Показники, що характеризують зміну більш або менш однорідних елементів складного явища, називаються індивідуальними індексами" [6, с. 20] Інакше кажучи, тут має місце повна ідентичність між категоріями "відносні величини" та "індивідуальні індекси". Більш виважену позицію займає Г.Бакланов, який стверджує, що "не всяка відносна величина може бути названа індексом. Індексами можна вважати лише такі відносні показники, які характеризують зміну явищ у часі (тобто динаміку), результат порівняння явищ у просторі (територіальні індекси). Характерно, що, обчислюючи індекси, ми зіставляємо у часі або в просторі явища одного і того ж економічного змісту. Не можна тому вважати індексами відносні показники структури (відношення частини до цілого), інтенсивності або координації" [2, с. 4-5]. Звідси випливає, що відмінності між індексами і відносними величинами існують, але лише в певній частині. Однак, там, де має місце співвідношення "явищ одного і того ж економічного змісту", відмінності між ними ніби зникають. У зв'язку з цим правомірно виникає запитання: якщо між індивідуальними індексами і відносними величинами або їх частиною відмінностей дійсно немає, навіщо ж вводити в практику подвійну термінологію і навіщо ці показники повторюються в декількох розділах теорії статистики під різними найменуваннями? Отже, є підстави визнати, що відмінність між індивідуальними індексами і відносними величинами існує, але знову-таки, все залежить від того, який підхід до дослідження динаміки явищ: системний або позасистемний. При системному підході відносні величини неминуче перетворюються в індивідуальні індекси, оскільки за ними обчислюються складні індекси, що відображають динаміку двох і більше взаємопов'язаних явищ. Індивідуальні індекси не являють собою показників особливого типу. Називаючи ту або іншу відносну величину індивідуальним індексом, статистик лише підкреслює, що ця величина призначена для розрахунку складного індексу. Аналогічне перетворення відносних величин в індивідуальні індекси відбувається також тоді, коли відносна зміна явища відображається за допомогою індексів його елементів. Наприклад, якщо потрібно визначити відносну зміну фонду заробітної плати при відомих індексах (темпах зростання) середньої заробітної плати і середній чисельності працівників, що отримали дану заробітну плату, то задача, як відомо, вирішується перемноженням вказаних індексів. Характерно, що в таких випадках оперуємо тільки відносними величинами і проте, маємо на увазі не метод відносних величин, а індексний метод. Пояснюється це тим, що відносні величини виступають в певній взаємопов'язаній системі. Тому одні і ті ж показники мають дві назви: якщо вони поза системою, то їх називають відносними величинами, а якщо в системі, - індексами. З таким положенням, на наш погляд, можна погодитися, бо воно дозволяє провести більш чітку межу між згаданими методами. Використовуючи здатність звичайних відносних величин перетворюватися в систему індексів, можна обчислити умовні показники, які не можна виразити в якісній формі. Таким шляхом, наприклад, розраховуються індекси реальної заробітної плати, які прямо пропорційні індексам номінальної заробітної плати і зворотно пропорційні індексам цін. Цілком очевидно, що в цій індексній системі індекс номінальної заробітної плати, коли він взятий ізольовано, не можна назвати індексом, бо він являє собою звичайний коефіцієнт динаміки (темп зростання) середньої заробітної плати.
Страницы: 1, 2, 3, 4, 5, 6