RSS    

   Приспособление растений к водному режиму

отдельные ксероморфные черты, но не столь ярко выраженные, как у

ксерофитов.

Психрофиты имеют ярко выраженную ксероморфную структуру листа. Так,

психрофильные злаки узколистны, имеют хорошо развитую проводящую и

механическую ткани; некоторые из них способны к свертыванию листовой

пластинки в трубку, напоминая степные ксерофиты. Вечнозеленые кустарнички

имеют плотные кожистые листья, иногда с весьма мощной кутикулой, плотной

палисадной паренхимой. Нижняя сторона, несущая устьица, часто опушена или

покрыта восковым налетом. Вместе с тем в структуре листа ясно заметны и

некоторые гигроморфные черты, главным образом, крупные размеры клеток и

развитие больших межклетников в губчатой ткани.

Анатомо-морфологические черты гидрофитов существенно отличают их от

наземных растений. Заметна редукция механических тканей. Столь же сильно

редуцированна и проводящая система. Если у сухопутных мезофитов длина жилок

на 1 кв.см. листа составляет около100 мм и более, а у ксерофитов доходит

до300, то у водных и прибрежных растений она в несколько раз меньше. Вот

несколько примеров (по Гесснеру Ф., 1959):

|Вид |Плавающие листья, мм |Подводные листья, мм |

|Nelumbium nuciferum |71 |— |

|Victoria cruciana |41 |— |

|Victoria regia |20 |— |

|Potamogeton praelongus |— |14 |

У некоторых погруженных растений, не прикрепленных к грунту, корни

полностью редуцированны, другие корни сохранили, но отдельно плавающие

части растений могут обходиться и без них. Корни укрепляющихся гидрофитов

слабоветвистые, без корневых волосков. Вместе с тем ряд видов имеет толстые

и прочные корневища, которые играют роль якоря, хранилища запасных веществ

и органа вегетативного размножения.

Листья погруженных гидрофитов очень тонки и нежны, имеют упрощенное

строение мезофилла без заметной дифференциации на палисадную и губчатую

паренхиму. Подводные листья без устьиц. В отдельных местах находятся группы

клеток эпидермиса с утонченными стенками. Считается, что они играют большую

роль в поглощении воды и растворенных минеральных солей.

У растений лишь частично погруженных в воду, хорошо выражена

гетерофиллия - различие строения надводных и подводных листьев на одной и

той же особи. Первые имеют черты, обычные для листьев наземных растений,

вторые – очень тонкие или рассеченные листовые пластинки. Гетерофиллия

отмечена у водного лютика – Ranunculus diversifolius, кувшинок и кубышек,

стрелолиста и других видов. Интересный пример – поручейник, на стебле

которого можно видеть несколько форм листьев, представляющих все переходы

от типично наземных до водных.

Глава III.Физиологические адаптации растений, приуроченных к

местообитаниям разной увлажненности.

Наряду с морфологическими особенностями у растений, приуроченных к

местам с разными условиями увлажненности, выработались и физиологические.

Способность гигрофитов к регуляции водного режима ограничена: устьица

большей частью широко открыты, так что транспирация мало отличается от

физического испарения. Благодаря беспрепятственному потоку воды и

отсутствию защитных приспособлений интенсивность транспирации очень высока:

у световых гигрофитов в дневное время листья могут терять за час количество

воды, в 4-5 раз превышающее массу листа. Высокая оводненность тканей

гигрофитов поддерживается в основном за счет постоянного притока влаги из

окружающей среды.

Другие характерные физиологические черты гигрофитов, обусловленные

легкой доступностью влаги, - низкое осмотическое давление клеточного сока,

незначительная водоудерживающая способность, приводящая к быстрой потере

запасов воды.особенно показательны для гигрофитов небольшие величины

сублетального водного дефицита: так, для кислицы и майника потеря 15%-20%

запаса воды уже необратима и ведет к гибели. В некоторых случаях у растений

сильно увлажненных местообитаний возникает необходимость удаления избытка

влаги. Обычно, это бывает, когда почва хорошо прогрета и корни активно

всасывают воду, а транспирация отсутствует (например, утром или при тумане,

когда влажность воздуха 100%). Избыточная влага удаляется путем гуттации –

выделение воды через специальные выделительные клетки, расположенные по

краю или на острие листа.

Ксерофиты обладают рядом разнообразных физиологических адаптаций,

позволяющих им успешно выдерживать недостаток влаги.

У ксерофитов обычно повышено осмотическое давление клеточного сока,

позволяющее всасывать воду даже при больших водоотнимающих силах почвы, то

есть использовать не только легкодоступную, но и труднодоступную почвенную

влагу. Оно измеряется тысячами кПа, а у некоторых пустынных кустарников

зарегистрированы цифры, достигающие 10000-30000 кПа.

С давних пор пристальное внимание привлекала проблема расхода воды

ксерофитами на транспирацию. Казалось бы, многочисленные анатомические

приспособления, достаточно надежно защищающие наземные части ксерофитов от

сильного испарения, должны способствовать значительному снижению

транспирации. Однако выяснилось, что в действительности это не так. При

достаточном водоснабжении большинство ксерофитов имеют довольно высокую

транспирацию, но при наступлении засушливых условий, они сильно сокращают

ее. При этом играет роль и закрывание устьиц, и сильное обезвоживание листа

при начинающемся подвядании. Несомненно, анатомо-морфологические

приспособления имеют определенное значение, но основную роль в

засухоустойчивости ксерофитов в настоящее время отводят физиологическим

механизмам.

К числу этих механизмов принадлежит высокая водоудерживающая

способность тканей и клеток, обусловленная рядом физиологических и

биохимических особенностей.

Большое значение для выживания ксерофитов при резком недостатке влаги

имеет их способность переносить глубокое обезвоживание тканей без потери

жизнеспособности и способности восстановления нормального содержания воды в

растении при возобновлении благоприятных условий. Ксерофиты способны

потерять до 75% всего водного запаса и, тем не менее, остаться живыми.

Ярким примером в этом отношении служат пустынные растения, которые летом

высыхают до состояния, близкого к воздушно-сухому, и впадают в анабиоз, но

после дождей возобновляют рост и развитие.

Еще одна система адаптаций, обеспечивающих выживание ксерофитов в

аридных условиях, - выработка сезонных ритмов, дающих возможность растениям

использовать для вегетации наиболее благоприятные периоды года и резко

сократить жизнедеятельность во время засухи. Так, в областях со

средиземноморским климатом с резко выраженным летним сухим периодом многие

ксерофильные виды имеют “двухтактный” ритм сезонного развития: весенняя

вегетация сменяется летним покоем, во время которого растения сбрасывают

листву и снижают интенсивность физиологических процессов; в период осенних

дождей вегетация возобновляется, и затем уже следует зимний покой. Сходное

явление наблюдается и у растений сухих степей в середине и конце лета:

потеря части листовой поверхности, приостановка развития, сильное

обезвоживание тканей и т.д. Такое состояние, получившее название

полупокоя, длится вплоть до осенних дождей, после которых у степных

ксерофитов начинают отрастать листья.

Физиологические адаптации суккулентов столь своеобразны, что их

необходимо рассмотреть отдельно.

Основной способ преодоления засушливых условий у суккулентов –

накопление больших запасов воды в тканях и крайне экономное ее

расходование. В условиях жаркого и сухого климата весь водный запас мог бы

быть быстро растрачен, но растения имеют защитные приспособления,

направленные к сокращению транспирации. Одно из них – своеобразная форма

надземных частей суккулентов. В дополнение к этому у многих суккулентов

поверхность защищена восковым налетом опушением, хотя есть и суккуленты с

тонким не защищенным эпидермисом. Устьица очень немногочисленны, часто

погружены в ткань листа или стебля. Днем устьица обычно закрыты, и потеря

воды идет в основном через покровные ткани.

Транспирация у суккулентов чрезвычайно мала. Ее трудно уловить за

короткий период и приходится определять расход воды не за час, а за сутки

или за неделю. Водоудерживающая способность тканей суккулентов значительно

выше, чем у других растений экологических групп, благодаря содержанию в

клетках гидрофильных веществ. Поэтому и без доступа влаги суккуленты

расходуют водный запас очень медленно и долго сохраняют жизнеспособность

даже в гербарии.

Ограничения, обусловленные особенностями водного режима суккулентов,

создают и другие трудности для жизни этих растений в аридных условиях.

Слабая транспирация сводит к минимуму возможность терморегуляции, с чем

связано сильное нагревание массивных надземных органов суккулентов.

Затруднения создаются и для фотосинтеза, поскольку днем устьица обычно

закрыты, а открываются ночью, следовательно, доступ углекислоты и света не

совпадают во времени. Поэтому у суккулентов выработался особый путь

фотосинтеза, при котором в качестве источника углекислоты, частично

используются продукты дыхания. Иными словами, в крайних условиях растения

частично используют принцип замкнутой системы с реутилизацией отходов

метаболизма.

В силу всех этих ограничений интенсивность фотосинтеза суккулентов

невелика, рост и накопление массы идут очень медленно, вследствие чего они

не отличаются высокой биологической продуктивностью и не образуют сомкнутых

растительных сообществ.

Физиологические показатели водного режима мезофитов подтверждают их

промежуточную позицию: для них характерны умеренные величины осмотического

давления, содержания воды в листьях, предельного водного дефицита. Что

касается транспирации, то ее величина в большей степени зависит от условий

освещенности и других элементов микро климата.

Один и тот же мезофильный вид, попадая в разные по водоснабжению

условия, обнаруживает известную пластичность, приобретая в сухих условиях

более ксероморфные, а во влажных более гигроморфные черты.

Пластичность листьев проявляется не только в разных местообитаниях, но

даже у одной и той же особи. Например, у деревьев на опушке леса листья на

стороне, обращенной в сторону леса, имеют более мезофильный и теневой

характер по сравнению с несколько ксероморфными листьями внешней стороны

дерева (см. табл. ниже ). Листья разных высотных ярусов одних и тех же

растений находятся в неодинаковых условиях водоснабжения, так как

поступление воды в верхние части связано с преодолением большого

сопротивления. К тому же у деревьев верхние листья обычно находятся в

условиях иного микроклимата.

Различие анатомо-физиологических показателей листьев на разных сторонах

кроны дерева, растущего на опушке леса.

I – сторона, обращенная к лесу, II – сторона, обращенная к поляне

| |Площ|Число |Содерж|Содер|Средняя |Толщин|

| |адь |устьиц|ание |жание|интенсивнос|а |

|Древесная порода |лист|на |воды, |хлоро|ть |листа,|

| |а, |1 мм2 |% |филла|фотосинтеза|мкм |

| |см2 | | |, |, мг СО2 | |

| | | | |мг/г |/дм2 ·ч | |

|Дуб – Quercus robur | | | | | | |

|I |42 |45 |61 |3.0 |1.9 |97 |

|II |18 |125 |54 |2.4 |2.3 |181 |

|Липа – Tilia cordata | | | | | | |

|I |38 |38 |71 |3.6 |1.6 |93 |

|II |24 |45 |62 |2.0 |1.1 |106 |

Водная среда существенно отличается от воздушной, поэтому у водных

растений существует ряд своеобразных физиологических адаптивных черт.

Интенсивность света в воде сильно ослаблена, поскольку часть падающей

радиации отражается от поверхности воды, другая – поглощается ее толщей. В

связи с ослаблением света фотосинтез у погруженных растений сильно

снижается с увеличением глубины. Считают, сто выживанию глубоководного

фитопланктона в зонах, где освещенность ниже точки компенсации,

способствуют его периодические вертикальные перемещения в верхние зоны, где

идет интенсивный фотосинтез и пополнение запасов органических веществ.

В воде кроме недостатка света растения могут испытывать и другое

затруднение, существенное для фотосинтеза, - недостаток доступной СО2 .

Углекислота поступает в воду в результате растворения СО2 ,

содержащегося в воздухе, дыхания водных организмов, разложения органических

остатков и высвобождения из карбонатов. При интенсивном фотосинтезе

растений идет усиленное потребление СО2 , в связи с чем легко возникает ее

дефицит.

На увеличение содержания СО2 в воде гидрофиты реагируют заметным

повышением фотосинтеза.

У погруженных растений транспирации нет, значит, нет и “верхнего

двигателя”, поддерживающего ток воды в растении. Однако этот ток,

доставляющий к тканям питательные вещества, существует, при чем с явной

суточной периодичностью: днем больше, ночью отсутствует. Активная роль в

его поддержании принадлежит корневому давлению и деятельности специальных

клеток, выделяющих воду, - водяных устьиц.

Плавающие или торчащие над водой листья обычно имеют сильную

транспирацию, хотя и расположены в слое воздуха, который непосредственно

граничит с водой и имеет повышенную влажность. Устьица широко открыты и

закрываются полностью только в ночное время.

Столь же велика транспирация у прибрежных растений, при чем у них

значительное количество воды расходуется не только листьями, но и стеблями.

Осмотическое давление у водных и прибрежных растений очень низкое, так

как им не приходится преодолевать водоудерживающую силу почвы при

поглощении воды.

Примеры осмотического давления (в кПа) у водных растений и гелофитов

(по Гесснеру Ф.,1959)

|Название растения |Давление в корне |Давление в листе |

|Водные растения |

|Hippuris vulgaris |940 |1120 |

|Nymphaea dentata |580 |760 |

|Victoria regia |580 | 760 |

|Гелофиты |

|Polygonum amphibium |— |950 |

|Menyanthes trifoliata |580 |1120 |

|Lythrum salicaria |— |1190 |

|Typha angustifolia |— |880 |

Список литературы.

1. Ботаника с основами экологии: Учеб. Пособие для студентов пед. ин-

тов /Л.В. Кудряшов и др. – М.: Просвещение,1979

2. Горышина Т.К. Экология растений. – М.: Высшая школа,1979

3. Гусев Н.А. Некоторые закономерности водного режима растений. – М.:

Изд-во АН СССР, 1959.

4. Двораковский М.С. Экология растений. –

М.: Просвещение 1964

5. Жданов В.С. Аквариумные растения. / Под. ред. Коровина. -

М.: Лесн. пром-ть , 1981

6. Крафтс А. Вода и ее значение в жизни растений. –

М.: Иност. лит., 1951

7. Культиасов И.М. Экология растений. - М.: Изд-во московского ун-та,

1982

8. Мак-Дуголл В.Б. Экология растений. – М.: Учпедгиз, 1935.

9. Пономарева И.Н. Экология растений с основами биогеоценологии. – М.:

Просвещение, 1978

10. Рычин Ю.В. Флора гигрофитов. Определитель. – М.: Сов. наука, 1948

11. Шенников А.П. Экология растений. – М.: Сов. наука, 1950

Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.