Новый подход в понимании преадаптации
роста стеблей, листьев и корней в фазу бокового ветвления и процессов
формирования органов семенного и вегетативного размножения в фазу цветения.
Поскольку существенным моментом регуляции роста и фотосинтеза является
гормональный баланс, нами была изучена динамика содержания эндогенных
фитогормонов в листья растений (графики рис. 10-12).
Содержание гиббереллинов в листьях увеличивается вплоть до фазы
бутонизации, затем падает. Содержание абсцизовой кислоты и ее производных
уменьшается от фазы всходов к фазе бокового ветвления и затем растет вплоть
до конца онтогенеза. Активность цитокининов снижается от всходов до
бокового ветвления, растет к фазе цветения и падает в фазу начала
пожелтения нижних листьев.
[pic]
Рис. 9. Чистая продуктивность фотосинтеза
[pic]
Рис. 10. Содержание гиббереллинов в листьях
[pic]
Рис. 11. Содержание цитокининов в листьях
[pic]
Рис. 12. Содержание абсцизовой кислоты в листьях
Cопоставление полученных данных дает следующие результаты. При сравнении
графиков рис. 5, 6, 7, 8 и графика рис. 9 видно, что интенсификация
формирования структуры фотосинтетического аппарата опережает в онтогенезе
усиление его функциональной активности. Действительно, в первые дни
показатели мезоструктуры листа самые высокие, очень резко в начале фазы
всходов растет содержание хлорофилла в листьях, а чистая продуктивность
фотосинтеза в этот период низка и только начинает расти. Далее в фазе
всходов содержание хлорофилла и показатели мезоструктуры снижаются, в то
время как чистая продуктивность растет. Максимум как по темпам прироста,
так и по абсолютным значениям для показателей развития структуры
фотосинтетического аппарата приходится на начало фазы всходов, а для его
функциональной активности - на конец этой фазы. Промежуток времени между
указанными экстремумами составляет у разных сортов от 10 до 20 дней. В фазе
бокового ветвления структурные показатели вновь растут, достигая максимума
в начале фазы бутонизации, вместе с тем функциональная активность
фотосинтетического аппарата в фазу бокового ветвления и в начале
бутонизации снижается, а растет и достигает максимума только в конце фазы
бутонизации растений, вновь отставая от максимума структурных показателей
на 10-15 дней. В период цветения и начала пожелтения нижних листьев как
структурные, так и функциональные показатели снижаются. Таким образом,
графики, отражающие изменения структурных и функциональных параметров
фотосинтетической деятельности, оказываются сдвинутыми по фазе.
Формирование структуры предваряет усиление фотосинтетической функции.
Сравнение динамики ростовых процессов и фотосинтетической деятельности
показывает, что в онтогенезе повышение фотосинтетической активности
предшествует активизации роста растений. Так, максимальный уровень
структурированности фотосинтетического аппарата имеет место в начале фазы
всходов, вслед за ним в конце этой фазы достигает максимума
фотосинтетическая активность, и только в фазу бокового ветвления
наблюдается пик линейного роста стеблей и листьев. Второй максимум темпов
формирования элементов фотосинтетического аппарата приходится на начало
фазы бутонизации, максимум чистой продуктивности фотосинтеза - на конец
этой фазы, а интенсивный рост органов семенного и вегетативного размножения
происходит лишь в период цветения.
Оценивая биологическое значение описанных выше закономерностей, мы
полагаем возможным интерпретировать их в качестве преадаптации. Четко
выраженная временная последовательность проявления экстремумов структурных
и функциональных параметров фотосинтетической деятельности позволяет
предположить, что заблаговременное повышение уровня структурированности
фотосинтетического аппарата подготавливает его к периоду интенсивного
функционирования. В противном случае накопление элементов
фотосинтетического аппарата, не приводящее к усилению его функции
непосредственно в период накопления, теряет биологический смысл. В свою
очередь предваряющее интенсивный рост усиление фотосинтетической
активности, вероятно, подготавливает растение к предстоящим в период роста
метаболическим перестройкам.
Эксперименты показали, что соотношение роста растений, формирования и
функционирования фотосинтетического аппарата не зависит от сортовой
принадлежности, индивидуальных особенностей, не изменяется в зависимости от
погодных условий вегетационного периода. Это позволяет заключить, что
обнаруженные закономерности являются генетически детерминированными. В
соответствии с разработанной нами классификацией [4] описанная в настоящей
работе преадаптация может быть отнесена к алгоритмирующим экспрессивным
радиациям. Алгоритмом она является в силу того, что определяет временную
последовательность физиологических процессов, и так как не нуждается во
внешнем (по отношению к ней) сигнале, может считаться экспрессивной, а в
связи с тем, что представляет собой генетическую программу,
сформировавшуюся в онтогенезе, то может быть названа радиацией.
Проявившаяся в опытах динамика роста и фотосинтетической деятельности
тесно связана с изменениями гормонального баланса. Интенсивный рост
происходит на фоне повышенного соотношения гиббереллины/абсцизовая кислота.
Снижение этого соотношения сопровождается ослаблением ростовых процессов.
Повышению уровня содержания эндогенных цитокининов соответствует усиление
дифференциации и функциональной активности фотосинтетического аппарата.
Выводы
Осуществленный в настоящей работе анализ онтогенетической динамики
ростовых процессов, формирования и функционирования фотосинтетического
аппарата позволяет сделать следующие выводы.
1. Усиление формирования фотосинтетического аппарата предшествует в
онтогенезе повышению его функциональной активности.
2. Повышение фотосинтетической активности предваряет интенсификацию
линейного роста органов и накопление массы растений.
3. Динамика фотосинтетической и ростовой активности сопровождается
соответствующими изменениями гормонального баланса.
4. Полученные данные могут быть интерпретированы как пример
преадаптации, являющейся алгоритмирующей экспрессивной радиацией.
Библиографический список
1. Гуревич А.С. Преадаптация растений // Биологическое разнообразие.
Интродукция растений. СПб.: Изд-во БИН им. В.Л.Комарова, 1995. С.104.
2. Гуревич А.С., Шкапенко Т.Н., Алтухова Т.С. Соотношение роста и
фотосинтеза как преадаптивная реакция растений // Труды первой
Всероссийской конференции по ботаническому ресурсоведению. СПб.: Изд-во БИН
им. В.Л.Комарова, 1996. С. 193-194.
3. Гуревич А.С., Шкапенко Т.Н., Алтухова Т.С. Роль фитогормонов в
преадаптивной регуляции соотношения роста и фотосинтеза растений //
Регуляторы роста и развития растений. М.: Изд-во МСХА им. К.А.Тимирязева,
1997. С. 86-87.
4. Гуревич А.С. Преадаптация и ее роль в жизни растений // Интродукция,
акклиматизация и культивация растений. Калинингр. ун-т. Калининград, 1996.
С. 3-9.
5. Якушкина Н.И. Физиология растений. М.: Просвещение, 1980. 303 с.
6. Ничипорович А.А., Власова М.П. О формировании и продуктивности работы
фотосинтетического аппарата разных культурных растений в течение
вегетационного периода // Физиология растений. 1961. Т.8. Вып. 1. С. 19-28.
7. Mac-Kinney G. Absorption of light by chlorophyll solutions // J.
Biol. Chem. 1941. V. 140, №. 2. P. 315-322.
8. Мокроносов А.Т., Борзенкова Р.А. Методика количественной оценки
структуры и функциональной активности фотосинтезирующих тканей и органов //
Труды по прикладной ботанике, генетике и селекции. Л., 1978. Т. 61. Вып. 3.
С. 119-133.
9. Власов В.П., Мазин В.В., Турецкая Р.Х. и др. Комплексный метод
определения природных регуляторов роста. Первичный анализ незрелых семян
кукурузы на активность свободных ауксинов, гиббереллинов и цитокининов с
помощью биотестов // Физиология растений. 1979. Т. 26. Вып. 3. С. 648-652.
Страницы: 1, 2