RSS    

   Записка к расчетам

S=h/2=0.2/2=0.1m; в средней части пролета поперечно арматуре не

применяется.

4. Расчет по образованию трещин, нормальных к продольной оси. М=43.29

кН*м.

Условие: М?Мerc

Вычисляем момент образования трещин по приближенному способу

ядровых моментов:

Мerc=Rbt,sec*Wpl+Mrp=1.8*106*7.38*103+17.31*103=30.59

кН*м,

Где Мrp=P2*(eop+rtng)=0.86*193.5*103*(0.07+0.034)=17.31 кН*м – ядровой

момент усилия обжатия..

Поскольку М=43,29 кН*м>Мerc=30,59 кН*м, трещины в растянутой зоне

образуется.

Проверяем, образуется ли начальные трещины в верхней зоне плиты

при обжатии при --- коэффициента точности натяжения jsp=1.14.

Расчетное условие: P1(eop-?rnj)?Rbtp*W’pl=9.95 кН*м.

Rbtp*Wpl=1.15*106*11.07*10-3=16.61 кН*м;

Т.к. P1(eop-?inf)=9.95 кН*м< Rbtp*W’pl=16.61 кН*м., начальные

трещины не образуются.

Здесь - Rbtp=1,15 МПа – сопротивление бетона растяжению,

соответствующее передаточной прочности бетона 15 МПа.

5. Расчет по раскрытию трещин, нормальных к продольной оси.

Предельная ширина раскрытия трещин: непродолжительная аerc=0,4 мм,

продолжительная аerc=0,3 мм. Изгибающие моменты от нормативных

нагрузок: постоянной и длительной М=34,59 кН*м, полной М=43,29 кН*м.

Приращение напряжений в растянутой арматуре от действия постоянной и

длительной нагрузок:

Gs=[M-P2(Z1-lsn) ]/Ws=[34.59*103-193.5*103(0.1515-0)]/0.086*10-

3=61.33 МПа.

Где Z1=h0-0.5hf’/2=0.17-0.5*0.037/2=0.1515 – плечо внутренней пары

сил;

lsn=0 так как усилие обжатия l приложено в ц.т. площади нижней

напрягаемой арматуры, момент: Ws=As*Z1=5.65*10-4*0.1515=0.086*10-3 –

момент сопротивления сечения по растянутой арматуре.

Приращение напряжений в арматуре от действия полной нагрузки:

Gs=(43,29*103-193,5*103*0,1515)/0,086*10-3=162,5 Мпа.

Вычисляем:

- ширина раскрытия трещин от непродолжительного действия веса нагрузки.

acrc1=0.02(3.5-100?)g??l(Gs/Es)3?d=0.02(3.5-

100*0.0138)1*1*1(162.5*106/190*104)* 3?0.012=0.13*10-3 m, где

?=Аs/b*h0=5.65*10-4/0.24*0.17=0.038, d=0.012 m – диаметр растянутой

арматуры.

- ширину раскрытия трещин от непродолжительного действия постоянной и

длительной нагрузок:

acrc1’=0.02(3.5-100*0.0138)*1*1*1(61.33*106/190*104)*

3?0.012=0.07*10-3 m.

- ширину раскрытия трещин от постоянной и длительной нагрузок :

acrc2=0.02(3.5-100*0.0138)*1*1*1,5(61.33*106/190*104)*

3?0.012=0.105*10-3 m

Непродолжительная ширина раскрытия трещин:

acrc= acrc1- acrc’+ acrc2=(0.13-0.07+0.105)*103=0.165*10-3 m1 – принимаем ?m=1.

?s=1.25-0.8=0.45опорного). В данном случае

проверку не производим, т.к. Мпр=83,46 кН*мQbmin/2h0=42.77*103/2*0.44=48.6 кН/м – ус-ие

удолетворяется.

Требование: Smax=

?l?Rbtb*b*h02/Qmax=1.5*0.9*0.9*106*0.2*0.442/156.8*103=0.3 m>S=0.15 m –

выполняется.

При расчете прочности вычисляем: Mb=

?l?Rbtb*b*h02=2*0.9*0.9*106*0.2*0.442=62.73 кН*м. Поскольку

q1=g+?/2=(24.95+27.36/2)*103=38.63 кН*м>0.56qsw=0.56*67.95*103=38.05

кН*м, вычисляем значение (с) по q?:

с= ?Мв/(q1+qsw)=?62.73*103/(38.63+67.95)*103=0.77

m2h0=2*0.44=0.88 m – принимаем

С0=0,88 м.

Тогда Qsw=qsw*c0=97.95*103*0.88=59.8 кН.

Условие прочности: Qb+Qsw=(81.47+59.8)*103=141.27 кН>Q=127.05 кН –

удовлетворяется.

Производим проверку по сжатой наклонной полосе:

?sw=Asw//b*S=0.392*10-4/0.2*0.15=0.0013;

?=Es/Eb=170*109/27*109=6.13;

?w1=1+5*?* ?w1=1+5*6.13**0.0013=1.04;

?b1=1-0.01*Rb=1+0.01*0.9*11.5=0.9.

Условие прочности: Qmax=156.8 кН20d=20*0.012=0.24m.

Во II сечении при шаге хомутов S=0.4 m:

Qsw=260*106*0.392*10-4=25.48 кН/м.

Длина анкеровки W2=40*103/2.25.48*103+5*0.012=0.84m>20d=0.24m.

Во II пролете принята арматура 2 ш12 А-III+2ш14 A-III с Аs=5,34*10-4 m2.

h0=0.44 m;

?=5.34*10-4/0.2*0.44=0.091;

?=0.0061*365*106/0.9*11.5*106=0.215;

?=1-0.5*0.215=0.892;

Ms=As*Rs*h0*?=5.34*10-4*365*106*0.892*0.44=76.5 кН*м.

Стержни 2ш14 А-III с As=3.08*10-4 m2 доводится до опор h0=0.47 m;

?=3.08*10-4/0.2*0.47=0.0033;

?=0.0033*365*106/0.9*11.5*106=0.116;

?=1-0.5*0.116=0.942.

Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

В месте теоретического обрыва стержня 2ш12 А-III поперечная сила Q3=40

кН;

qsw=25.48 кН/м; Длина анкеровки:

W3=40*103/2*25.48*103+5*0.00120.84m>20d=20*0.0012=0.24m.

На средней опоре принята арматура 2ш10 А-III+2ш20 А-III с As=7.85*10-4

m2.

h0=0.44 m;

?=7.65*10-4/0.2*0.44=0.0089;

?=0.0089*365*106/0.9*11.5*106=0.314;

?=1-0.5*0.314=0.843.

Ms=As*Rs*h0*?=7.65*10-4*365*106*0.843*0.44=106.28 кН*м.

Графически определим точки теоретического обрыва двух стержней ш20А –

III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина

анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m.

На крайней опоре принята арматура 2ш14 А – III с As=3.08*10-4 m2.

Арматура располагается в один ряд.

h0=0.47m;

?=3.08*10-4/0.2*0.47=0.0033;

?=0.0033*365*106/0.9*11.5*106=0.116;

?=1-0.5*0.116=0.942.

Ms=As*Rs*h0*?=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

Поперечная сила в ---- обрыва стержней Qs=100 кН;

Qsw=67.95 кН/м; Длина анкеровки –

W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.

3.10 Расчет стыка сборных элементов ригеля.

Рассматриваем вариант бетонированного стыка. В этом случае изгибающий

момент на опоре воспринимается соединительными и бетоном, заполняющий

полость между торцами ригелей и колонной.

Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота

сечения ригеля

h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20;

Rb=11.5 МПа.

gbr=0.9;

Арматура – класса А-III, Rs=365 МПа.

Вычисляем: ?m=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195

По таблице 3.1[1] находим: ?=0,89 и определяем площадь сечения

соединительных стержней:

As=M/Rs*h0* ?=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.

Принимаем: 2ш20 А-III с As=6.28*10-4 m2.

Длину сварных швов определяем следующим образом:

Slm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,

где N=M/h0*?=94.96*103/0.89*0.485=220 кН.

Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов

в случае перераспределение моментов вследствие пластических деформаций.

При двух стыковых стержнях и двусторонних швах длина каждого шва будет

равна :

lw=Slw/4+0.01=0.22/4+0.01=0.06 m.

Конструктивное требование: lw=5d=5*0.02=0.1 m.

Принимаем l=0.1m

Площадь закладной детали из условия работы на растяжение:

A=N/Rs=220*103/210*106=10.5*10-4 m2.

Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;

A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.

Длина стыковых стержней складывается из размера сечения колонны, двух

зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

3. Расчет внецентренно сжатой колонны.

1. Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна

Агр=6*5,2=31,2 м2.

Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95:

Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66

кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого:

Gперекр=138,72 кН.

Временная нагрузка от перекрытия одного этажа с учетом jn=0.95:

Qвр=4800*31,2*0,95=142,27 кН, в точности длительная:

Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35

кН.

Постоянная нагрузка при весе кровли и плиты 4 КПа составляет:

Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны:

Qcol=6,86 кН;

Итого: Gпокр=141,08 кН.

Снеговая нагрузка для города Москвы – при коэффициентах надежности по

нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5

кН, в точности длительная:

Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.

Продольная сила колонны I этажа от длительных нагрузок :

Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки

N=(608.81+29.05+53.35)*103=691.21 кН.

2. Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн – при загружении 1+2 без

перераспределения моментов. При действии длительных нагрузок:

М21=(?*g+?*?)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.

N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.

При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= -

119,85 кН*м;

М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.

Разность абсолютных значений опорных моментов в узле рамы: при

длительных нагрузках

?Мl=(102.65-81.19)*103=21.46 кН*м;

?М=(119,85-89,52)*103=30,33 кН*м.

Изгибающий момент колонны I этажа: М1l=0.6*?Мl=0.6*21.46*103=12.88

кН*м; от полной нагрузки: М1=0,6*?М=0,6*30,33*103=18,2 кН*м.

Вычисляем изгибающие моменты колонны, соответствующие максимальным

продольным силам; для этого используем загружение пролетов ригеля по

схеме 1.

От длительных нагрузок : ?Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;

Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.

От полных нагрузок: ?М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м;

изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

3. Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.

Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.

Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных

нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от

длительных нагрузок M1l=6.5 кН*м.

Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и

соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН,

в точности Nl=608.81*103-88.92*103/2=564.35 кН.

4. Подбор сечений симметричной арматуры As= As’.

Приведем расчет по второй комбинаций усилий.

Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.

Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный

эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m>

случайного, его и принимаем для расчета статически неопределимой системы.

Находим значение моментов в сечении относительно оси, проходящий через

ц.т. наименее сжатой (растянутой) арматуры.

При длительной нагрузки: : М1l=Мl+Nl(h/2-

a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки:

М1=18,2*103+620,1*103*0,085=70,91 кН*м.

Отношение l0/?=4.2/0.0723=58.1>14

Расчетную длину многоэтажных зданий при жестком соединении ригеля с

колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В

нашем случае l0=l=4,2 м.

Для тяжелого бетона: ?l=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение

j=l0/h=0.029/0.25=0.116?R.

2) ?S= ?n(e/h0-1+ ?n/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0

j’=a’/h0=0.04/0.21=0.19.

3) ?= ?n(1- ?R)+2* ?S* ?R /1- ?R+2* ?S=(1.14*(1-0.6)+2*0.27*0.6)/1-

0.6+2*0.27=0.83> ?R

Определяем площадь сечения арматуры:

As=As’=N/Rs*(e/h0- ?*(1- ?/2)/ ?n)/1-j’=620.1*103/365*103*(0.13/0.21-

0.83*(1-0.83)/1.14)/1-0.19=

=4.05*10-4 m2.

Принимаем 2ш18 А-III с As=5.09*10-4 m2.

Проверяем коэффициенты армирования: ?=2*As/A=2*5.09*10-

4/0.252=0.016Q=10.19 кН – условие

прочности удовлетворяется.

Расчетные изгибающие моменты в сечениях I-I и II-II.

MI=0.125*p(a-hcol)2*b=0.125*156.74*103*(2.1-0.25) 2*2.1=140.82 кН*м.

MII=0.125*p(a-a1)2*b=0.125*156.74*103*(2.1-0.9) 2*2.1=59.25 кН*м.

Площадь сечения арматуры:

ASI=MI/0.9*h0*Rs=140.82*103/0.9*0.86*280*106=6.5*10-4 m2.

ASII=MII/0.9*h01*Rs=59.25*103/0.9*0.56*280*106=4.2*10-4 m2.

Принимаем нестандартную сварную сетку с одинаковой рабочей арматурой 9ш10 А-

II c As=7.07*10-4 m2 с шагом S=0.25 m.

Процент армирования:

?I=ASI*100/bI*h0=7.07*10-4/0.9*0.86=0.09%

?II=ASII*100/bII*h01=7.07*10-4/1.5*0.56=0.084%

что больше ?mim=0.09% и меньше ?max=3%.

6 Расчет монолитного ребристого перекрытия.

Монолитное ребристое перекрытие компонуем с поперечными главнами

балками и продольными второстепенными балками.

Второстепенные балки размещаются по осям колони в третех пролете

главной балки, при этом пролеты плиты между осями ребер равны: l/3=

5.2/3=1.73 m.

Предварительно задаемся размерами сечения балок: главная балка:

высота h=(1/8+1/15)*f=(1/12)*5.2=0.45 m; ширина b=(0.4/0.5)*h=0.45*0.45=0.2

m.

Второстепенная балка: высота h=(1/12+1/20)*l=(1/15)*6=0.4m; ширина

b=(0.4/0.5)*h=0.5*0.4=0.2m.

6.1 Расчет многопролетной плиты монолитного перекрытия.

6.1.1 Расчетный пролет и нагрузки.

Расчетный пролет плиты равен расстоянию в свему между гранями ребер

l0=1.73-0.2=1.53m, в продольном направлении – l0=6-0.2=5.8 m. Отношение

пролетов 5,8/1,53=3,8>2 – плиту рассчитываем как работающую по короткому

направлению. Принимаем толщину плиты 0,05 м.

Таблица 3 Нагрузка на 1 м2 перекрытия.

|Нагрузка |Нормативная |Коэффициент |Расчетная |

| |нагрузка, |надежности по |нагрузка, |

| |Н/м2 |нагрузке |Н/м2 |

|Постоянная: | | | |

|- от собственного | | | |

|веса плиты, |1250 |1,1 |1375 |

|?=0,05м, ?=2500 кг/м3| | | |

| |440 |1,3 |570 |

|- то же слоя | | | |

|цементного р-ра, |230 |1,1 |255 |

|?=20 мм, ?=2200 кг/м3| | | |

| | | | |

|- то же керамических | | | |

|плиток, | | | |

|?=0,013 м, ?=1800 | | | |

|кг/м3 | | | |

|Итого |1920 |- |2200 |

|Временная |4000 |1,2 |4800 |

| |5920 |- |7000 |

|Полная | | | |

Для расчета многопролетной плиты выделяем полосу шириной 1 м, при этом

расчетная нагрузка на 1 м длины с учетом коэффициента надежности по

назначению здания jn=0.95 нагрузка на 1м:

(g+?)=7000*0.95=6.65 кН/м.

Изгибающие моменты определяем как для многопролетной плиты с учетом

перераспределения моментов:

- в средних пролетах и на средних опорах:

М=(g+?)*l20/16=6.65*103*1.532/16=0.97 кН*м.

- в I пролете и на I промежуточной опоре:

М=(g+?)*l20/11=6.65*103*1.532/11=1.42 кН*м.

Средние пролеты плиты окаймлены по всему контуру монолитно связанными

с ними балками и под влиянием возникающих распоров изгибающие моменты

уменьшаются на 20%, если h/l=1/30. При h/l=0,05/1,53=1/31Qbmin/2*h0=23*83*103/2*0.265=44.96 кН/м – удовлетворяется.

Требование: Smax=

?b4*Rbt*b*h0/Qmax=1.5*0.9*0.75*106*0.2*0.2652/45.83*103=0.31m>S=0.15m –

выполняется.

При расчете прочности вычисляем:

Mb= ?b3*(1+?f)*Rbt*b*h02=2*1.11*0.9*0.75*106*0.2*0.2652=21.05 кН*м.

При

q1=g+?/2=(5.28+7.89/2)*103=9.23 кН/м.3.33h0=3.33*0.265=0.88m – принимаем

с=0,88 м, тогда

Qb=Me/c=21.05*103/0.88=23.92 кН> Qbmin=23.83 кН.

Поперечная сила в вершине наклонного сечения Q=Qmax-q1*c=45.83*103-

9.23*103*0.88=37.71 кН. Длина проекции расчетного наклонного сечения

с0=?Mb/qsw=?21.05*103/67.95*103=0.56m>2*h0=2*0.265=0.53 m – принимаем

с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН

–удовлетворяется.

Проверка по сжатой наклонной полосе:

?w=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;

?s=Es/Eb=170*109/23*109=7.4;

?w1=1+5* ?s*?=1+5*7.4*0.0013=1.05;

?b1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;

Условия прочности:

Qmax=45.83 кН?0.3* ?b1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН

– удовлетворяется.

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.